Reducibility of linear systems with aftereffect
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 53-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that a linear system with aftereffect on each finite-dimensional subspace of solutions with finite Lyapunov indices is asymptotically similar under natural assumptions to a system of ordinary differential equations. A system with the right-hand side recurrent with respect to time is investigated in detail and a family of systems with aftereffect, whose space of solutions with finite Lyapunov indices is finite-dimensional, is constructed. The research is based on the conception of N. N. Krasovskii, according to which to every system with aftereffect there corresponds some dynamical system with infinite-dimensional phase space and a flow on it generated by solutions of the original system with aftereffect.
@article{TIMM_2005_11_1_a5,
     author = {T. S. Bykova and E. L. Tonkov},
     title = {Reducibility of linear systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {53--64},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/}
}
TY  - JOUR
AU  - T. S. Bykova
AU  - E. L. Tonkov
TI  - Reducibility of linear systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 53
EP  - 64
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/
LA  - ru
ID  - TIMM_2005_11_1_a5
ER  - 
%0 Journal Article
%A T. S. Bykova
%A E. L. Tonkov
%T Reducibility of linear systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 53-64
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/
%G ru
%F TIMM_2005_11_1_a5
T. S. Bykova; E. L. Tonkov. Reducibility of linear systems with aftereffect. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 53-64. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Gos. izdat. fiz.-matem. lit., M., 1959, 211 pp. | MR

[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[3] Shimanov S. N., “Nekotorye voprosy teorii kolebanii sistem s zapazdyvaniem”, Pyataya letnyaya matem. shkola, Kiev, 1968, 473–549 | Zbl

[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp. | MR | Zbl

[5] Tonkov E. L., “Dinamicheskie zadachi vyzhivaniya”, Vestnik Permskogo gos. tekhnich. un-ta. Funktsionalno-differentsialnye uravneniya (spets. vypusk), 1997, no. 4, 138–148

[6] Bykova T. S., Tonkov E. L., “Lyapunovskaya privodimost lineinoi sistemy s posledeistviem”, Differents. uravneniya, 39:6 (2003), 731–737 | MR | Zbl

[7] Bylov B. Yu., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966, 576 pp. | MR | Zbl

[8] Tonkov E. L., “Pokazateli Lyapunova i lyapunovskaya privodimost lineinoi sistemy s posledeistviem”, Vestnik Udmurtskogo un-ta. Matematika, 2001, no. 3, 13–30, Izhevsk

[9] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR