Reducibility of linear systems with aftereffect
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 53-64

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a linear system with aftereffect on each finite-dimensional subspace of solutions with finite Lyapunov indices is asymptotically similar under natural assumptions to a system of ordinary differential equations. A system with the right-hand side recurrent with respect to time is investigated in detail and a family of systems with aftereffect, whose space of solutions with finite Lyapunov indices is finite-dimensional, is constructed. The research is based on the conception of N. N. Krasovskii, according to which to every system with aftereffect there corresponds some dynamical system with infinite-dimensional phase space and a flow on it generated by solutions of the original system with aftereffect.
@article{TIMM_2005_11_1_a5,
     author = {T. S. Bykova and E. L. Tonkov},
     title = {Reducibility of linear systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/}
}
TY  - JOUR
AU  - T. S. Bykova
AU  - E. L. Tonkov
TI  - Reducibility of linear systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 53
EP  - 64
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/
LA  - ru
ID  - TIMM_2005_11_1_a5
ER  - 
%0 Journal Article
%A T. S. Bykova
%A E. L. Tonkov
%T Reducibility of linear systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 53-64
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/
%G ru
%F TIMM_2005_11_1_a5
T. S. Bykova; E. L. Tonkov. Reducibility of linear systems with aftereffect. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 53-64. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a5/