On the dynamic unfolding of a~saddle-center bifurcation and the change in the action
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164

Voir la notice de l'article provenant de la source Math-Net.Ru

Conservative Hamiltonian systems with slow variations are considered in the case of a dynamic saddle-center bifurcation. Using the method of averaging, action is an adiabatic invariant before and after the slow passage of the homoclinic orbit. The bifurcation is unfolded by assuming that the time that the method of averaging predicts that the homoclinic orbit is crossed is near to the time of the saddle-center bifurcation. The slow passage through homoclinic orbits associated with the unfolding of a saddle-center bifurcation is analyzed and the change in the adiabatic invariant is computed.
@article{TIMM_2003_9_1_a18,
     author = {R. Haberman and D. C. Diminnie},
     title = {On the dynamic unfolding of a~saddle-center bifurcation and the change in the action},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--164},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/}
}
TY  - JOUR
AU  - R. Haberman
AU  - D. C. Diminnie
TI  - On the dynamic unfolding of a~saddle-center bifurcation and the change in the action
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 159
EP  - 164
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/
LA  - en
ID  - TIMM_2003_9_1_a18
ER  - 
%0 Journal Article
%A R. Haberman
%A D. C. Diminnie
%T On the dynamic unfolding of a~saddle-center bifurcation and the change in the action
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 159-164
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/
%G en
%F TIMM_2003_9_1_a18
R. Haberman; D. C. Diminnie. On the dynamic unfolding of a~saddle-center bifurcation and the change in the action. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/