On the dynamic unfolding of a saddle-center bifurcation and the change in the action
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Conservative Hamiltonian systems with slow variations are considered in the case of a dynamic saddle-center bifurcation. Using the method of averaging, action is an adiabatic invariant before and after the slow passage of the homoclinic orbit. The bifurcation is unfolded by assuming that the time that the method of averaging predicts that the homoclinic orbit is crossed is near to the time of the saddle-center bifurcation. The slow passage through homoclinic orbits associated with the unfolding of a saddle-center bifurcation is analyzed and the change in the adiabatic invariant is computed.
@article{TIMM_2003_9_1_a18,
     author = {R. Haberman and D. C. Diminnie},
     title = {On the dynamic unfolding of a~saddle-center bifurcation and the change in the action},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--164},
     year = {2003},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/}
}
TY  - JOUR
AU  - R. Haberman
AU  - D. C. Diminnie
TI  - On the dynamic unfolding of a saddle-center bifurcation and the change in the action
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 159
EP  - 164
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/
LA  - en
ID  - TIMM_2003_9_1_a18
ER  - 
%0 Journal Article
%A R. Haberman
%A D. C. Diminnie
%T On the dynamic unfolding of a saddle-center bifurcation and the change in the action
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 159-164
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/
%G en
%F TIMM_2003_9_1_a18
R. Haberman; D. C. Diminnie. On the dynamic unfolding of a saddle-center bifurcation and the change in the action. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/

[1] Bourland F. J., Haberman R., “Separatrix Crossing: Time-Invariant Potentials with Dissipation”, SIAM J. Appl. Math., 50 (1990), 1716–1744 | DOI | MR | Zbl

[2] Cary J. R., Escande D. F., Tennyson J. L., “Adiabatic Invariant Change Due to Separatrix Crossing”, Phys. Rev. A, 34 (1986), 4256–4275 | DOI

[3] Cary J. R., Skodje R. T., “Phase Change between Separatrix Crossings”, Physica D, 36 (1989), 287–316 | DOI | MR | Zbl

[4] Diminnie D. C., Haberman R., “Slow Passage through a Saddle-Center Bifurcation”, J. Nonlinear Sci., 10 (2000), 197–221 | DOI | MR | Zbl

[5] Diminnie D. C., Haberman R., “Slow Passage through the Nonhyperbolic Homoclinic Orbit of the Saddle-Center Hamiltonian Bifurcation”, Studies Appl. Math., 108 (2002), 65–75 | DOI | MR | Zbl

[6] Diminnie D. C., Haberman R., “Slow Passage through Homoclinic Orbits for the Unfolding of a Saddle-Center Bifurcation and the Change in the Adiabatic Invariant”, Physica D, 162 (2002), 34–52 | DOI | MR | Zbl

[7] Diminnie D. C., Haberman R., “Action and Period of Homoclinic and Periodic Orbits for the Unfolding of a Saddle-Center Bifurcation”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 13:11 (2003), 3519–3530 | DOI | MR | Zbl

[8] Glebov S. G., Kiselev O. M., “Applicability of the WKB Method in the Perturbation Problem for the Equation of Principal Resonance”, Rus. J. Math. Phys., 9:1 (2002), 60–83 | MR | Zbl

[9] Haberman R., “Slowly Varying Jump and Transition Phenomena Associated with Algebraic Bifurcation Problems”, SIAM J. Appl. Math., 37 (1979), 69–106 | DOI | MR | Zbl

[10] Haberman R., “Slow Passage through a Transcritical Bifurcation for Hamiltonian Systems and the Change in Action Due to a Nonhyperbolic Homoclinic Orbit”, Chaos, 10 (2000), 641–648 | DOI | MR | Zbl

[11] Haberman R., “Slow Passage through the Nonhyperbolic Homoclinic Orbit Associated with a Subcritical Pitchfork Bifurcation for Hamiltonian Systems and the Change in Action”, SIAM J. Appl. Math., 62 (2001), 488–513 | DOI | MR | Zbl

[12] Mareé G. J. M., “Slow Passage through a Pitchfork Bifurcation”, SIAM J. Appl. Math., 56 (1996), 889–918 | DOI | MR | Zbl

[13] Neishtadt A. I., “Change of an Adiabatic Invariant at a Separatrix”, J. Plasma Phys., 12 (1986), 568–573