On the dynamic unfolding of a~saddle-center bifurcation and the change in the action
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164
Voir la notice de l'article provenant de la source Math-Net.Ru
Conservative Hamiltonian systems with slow variations are considered in the case of a dynamic saddle-center
bifurcation. Using the method of averaging, action is an adiabatic invariant before and after the slow passage
of the homoclinic orbit. The bifurcation is unfolded by assuming that the time that the method of averaging
predicts that the homoclinic orbit is crossed is near to the time of the saddle-center bifurcation. The slow
passage through homoclinic orbits associated with the unfolding of a saddle-center bifurcation is analyzed and
the change in the adiabatic invariant is computed.
@article{TIMM_2003_9_1_a18,
author = {R. Haberman and D. C. Diminnie},
title = {On the dynamic unfolding of a~saddle-center bifurcation and the change in the action},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {159--164},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/}
}
TY - JOUR AU - R. Haberman AU - D. C. Diminnie TI - On the dynamic unfolding of a~saddle-center bifurcation and the change in the action JO - Trudy Instituta matematiki i mehaniki PY - 2003 SP - 159 EP - 164 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/ LA - en ID - TIMM_2003_9_1_a18 ER -
%0 Journal Article %A R. Haberman %A D. C. Diminnie %T On the dynamic unfolding of a~saddle-center bifurcation and the change in the action %J Trudy Instituta matematiki i mehaniki %D 2003 %P 159-164 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/ %G en %F TIMM_2003_9_1_a18
R. Haberman; D. C. Diminnie. On the dynamic unfolding of a~saddle-center bifurcation and the change in the action. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/