@article{TIMM_2003_9_1_a18,
author = {R. Haberman and D. C. Diminnie},
title = {On the dynamic unfolding of a~saddle-center bifurcation and the change in the action},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {159--164},
year = {2003},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/}
}
TY - JOUR AU - R. Haberman AU - D. C. Diminnie TI - On the dynamic unfolding of a saddle-center bifurcation and the change in the action JO - Trudy Instituta matematiki i mehaniki PY - 2003 SP - 159 EP - 164 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/ LA - en ID - TIMM_2003_9_1_a18 ER -
R. Haberman; D. C. Diminnie. On the dynamic unfolding of a saddle-center bifurcation and the change in the action. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 159-164. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a18/
[1] Bourland F. J., Haberman R., “Separatrix Crossing: Time-Invariant Potentials with Dissipation”, SIAM J. Appl. Math., 50 (1990), 1716–1744 | DOI | MR | Zbl
[2] Cary J. R., Escande D. F., Tennyson J. L., “Adiabatic Invariant Change Due to Separatrix Crossing”, Phys. Rev. A, 34 (1986), 4256–4275 | DOI
[3] Cary J. R., Skodje R. T., “Phase Change between Separatrix Crossings”, Physica D, 36 (1989), 287–316 | DOI | MR | Zbl
[4] Diminnie D. C., Haberman R., “Slow Passage through a Saddle-Center Bifurcation”, J. Nonlinear Sci., 10 (2000), 197–221 | DOI | MR | Zbl
[5] Diminnie D. C., Haberman R., “Slow Passage through the Nonhyperbolic Homoclinic Orbit of the Saddle-Center Hamiltonian Bifurcation”, Studies Appl. Math., 108 (2002), 65–75 | DOI | MR | Zbl
[6] Diminnie D. C., Haberman R., “Slow Passage through Homoclinic Orbits for the Unfolding of a Saddle-Center Bifurcation and the Change in the Adiabatic Invariant”, Physica D, 162 (2002), 34–52 | DOI | MR | Zbl
[7] Diminnie D. C., Haberman R., “Action and Period of Homoclinic and Periodic Orbits for the Unfolding of a Saddle-Center Bifurcation”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 13:11 (2003), 3519–3530 | DOI | MR | Zbl
[8] Glebov S. G., Kiselev O. M., “Applicability of the WKB Method in the Perturbation Problem for the Equation of Principal Resonance”, Rus. J. Math. Phys., 9:1 (2002), 60–83 | MR | Zbl
[9] Haberman R., “Slowly Varying Jump and Transition Phenomena Associated with Algebraic Bifurcation Problems”, SIAM J. Appl. Math., 37 (1979), 69–106 | DOI | MR | Zbl
[10] Haberman R., “Slow Passage through a Transcritical Bifurcation for Hamiltonian Systems and the Change in Action Due to a Nonhyperbolic Homoclinic Orbit”, Chaos, 10 (2000), 641–648 | DOI | MR | Zbl
[11] Haberman R., “Slow Passage through the Nonhyperbolic Homoclinic Orbit Associated with a Subcritical Pitchfork Bifurcation for Hamiltonian Systems and the Change in Action”, SIAM J. Appl. Math., 62 (2001), 488–513 | DOI | MR | Zbl
[12] Mareé G. J. M., “Slow Passage through a Pitchfork Bifurcation”, SIAM J. Appl. Math., 56 (1996), 889–918 | DOI | MR | Zbl
[13] Neishtadt A. I., “Change of an Adiabatic Invariant at a Separatrix”, J. Plasma Phys., 12 (1986), 568–573