Asymptotics of the second kind polynomials and above and below point estimates of its derivatives
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 71-83
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Above and below point estimates have been established for fixed order $j\in\mathbf Z_+$ derivatives of the second kind polynomials associated with polynomials orthogonal on the circle $|z|=1$ with respect to the weight $|\sin\tau|$. Besides the uniform asymptotical representation has been obtained for the afore mentioned second kind polynomials in terms of the ones of the first kind. This result implies the asymptotical formula for the second kind Legendre polynomials, which is an analogue of the corresponding Szegö formula for Jacobi polynomials.
			
            
            
            
          
        
      @article{TIMM_1992_1_a4,
     author = {V. M. Badkov},
     title = {Asymptotics of the second kind polynomials and above and below point estimates of its derivatives},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a4/}
}
                      
                      
                    TY - JOUR AU - V. M. Badkov TI - Asymptotics of the second kind polynomials and above and below point estimates of its derivatives JO - Trudy Instituta matematiki i mehaniki PY - 1992 SP - 71 EP - 83 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a4/ LA - ru ID - TIMM_1992_1_a4 ER -
V. M. Badkov. Asymptotics of the second kind polynomials and above and below point estimates of its derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 71-83. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a4/