Alternative construction of the determinant theory
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish in a direct way, without involving the sigh function of permutations and matrice reducing to echelon form, the equivalence of the expansion of determinant along any row and any column. On base of this the rest of the theory of determinants is significantly simplified: determinant multiplicativity, the generalized Laplace expansion and Cauchy–Binet formula and so on.
Keywords: the equality theorem, the multiplicative property of determinants, the generalized Laplace expansion and Cauchy–Binet formula.
@article{TIMB_2024_32_2_a8,
     author = {S. M. Ageev and H. S. Ageeva},
     title = {Alternative construction of the determinant theory},
     journal = {Trudy Instituta matematiki},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a8/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - H. S. Ageeva
TI  - Alternative construction of the determinant theory
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 93
EP  - 96
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a8/
LA  - ru
ID  - TIMB_2024_32_2_a8
ER  - 
%0 Journal Article
%A S. M. Ageev
%A H. S. Ageeva
%T Alternative construction of the determinant theory
%J Trudy Instituta matematiki
%D 2024
%P 93-96
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a8/
%G ru
%F TIMB_2024_32_2_a8
S. M. Ageev; H. S. Ageeva. Alternative construction of the determinant theory. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 93-96. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a8/

[1] Botha J. D., “Alternative proofs of the rational canonical form theorem”, Int. J. Math. Educ. Sci. Technol., 25:5 (1994), 745–749 | DOI | MR

[2] Filippov A. F., “Kratkoe dokazatelstvo teoremy o privedenii matritsy k zhordanovoi forme”, Vestn. MGU. Ser. matem., 26:1–2 (1971), 70–71