On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The issues of constructing numerical algorithms based on the Chebyshev spectral method for approximate solution of elliptic equations with mixed derivatives in a rectangular domain with homogeneous Dirichlet boundary conditions are considered. To implement the spectral method, the biconjugate gradients stabilized method with preconditioners in the form of finite difference or spectral analogs of the Laplace operator is used. A comparison of the efficiency of processing the preconditioner using the iterative method of alternating directions and the Bartels–Stewart algorithm is carried out. The presented results show that the considered algorithms demonstrate computational characteristics comparable in computation time on grids of the same dimension with the characteristics of difference methods, but they are many times superior to the latter in accuracy in the case of sufficiently smooth solutions.
Keywords: Chebyshev spectral method, Elliptic equations with mixed derivatives, biconjugate gradient stabilized method, alternating directions implicit method, Bartels–Stewart algorithm.
@article{TIMB_2024_32_2_a7,
     author = {V. M. Volkov and Dong Jinghui},
     title = {On the implementation of the {Chebyshev} spectral method for two-dimensional elliptic equations with mixed derivatives},
     journal = {Trudy Instituta matematiki},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/}
}
TY  - JOUR
AU  - V. M. Volkov
AU  - Dong Jinghui
TI  - On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 82
EP  - 92
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/
LA  - ru
ID  - TIMB_2024_32_2_a7
ER  - 
%0 Journal Article
%A V. M. Volkov
%A Dong Jinghui
%T On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives
%J Trudy Instituta matematiki
%D 2024
%P 82-92
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/
%G ru
%F TIMB_2024_32_2_a7
V. M. Volkov; Dong Jinghui. On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 82-92. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/

[1] Samarski A. A., Andreev V. B., Finite-difference methods for elliptical equations, Nauka, M., 1976 (in Russian)

[2] Ciarlet P. G., The finite element method for elliptic problems, Society for Industrial and Applied Mathematics, 2002 | MR

[3] Samarski A. A., Nikolaev E. S., Methods for Solving Grid Equations, Nauka, M., 1978 (in Russian)

[4] Hackbusch W., Multi-grid methods and applications, v. 4, Springer Science. Business Media, 2013

[5] D'yakonov E. G., Optimization in solving elliptic problems, CRC Press, 2018 | MR

[6] Boyd J. P., Chebyshev and Fourier spectral methods, Courier Corporation, 2001 | MR

[7] Trefethen L. N., Spectral Methods in MATLAB, SIAM, Philadelphia, 2000 | MR

[8] Simoncini V., “Computational methods for linear matrix equations”, SIAM REVIEW, 58:3 (2016), 377–441 | DOI | MR

[9] Peaceman D. W., Rachford Jr H. H., “The numerical solution of parabolic and elliptic differential equations”, Journal of the Society for Industrial and Applied Mathematics, 3:1 (1955), 28–41 | DOI | MR

[10] Benner P., Li R. C., Truhar N., “On the ADI method for Sylvester equations”, Journal of Computational and Applied Mathematics, 233:4 (2009), 1035–1045 | DOI | MR

[11] Fortunato D., Townsend A., “Fast Poisson solvers for spectral methods”, IMA Journal of Numerical Analysis, 40:3 (2020), 1994–2018 | DOI | MR

[12] Bartels R. H., Stewart G. W., “Algorithm 432 [C2]: Solution of the matrix equation $AX + XB = C ~ [\mathrm{F}4]$”, Communications of the ACM, 15:9 (1972), 820–826 | DOI

[13] Damm T., “Direct methods and ADI preconditioned Krylov subspace methods for generalized Lyapunov equations”, Numerical Linear Algebra with Applications, 15:9 (2008), 853–871 | DOI | MR

[14] Jbilou K., “ADI preconditioned Krylov methods for large Lyapunov matrix equations”, Linear algebra and its applications, 432:10 (2010), 2473–2485 | DOI | MR

[15] Volkov V. M., Kachalouskaya E. I., “An iterative Chebyshev spectral solver for two-dimensional elliptic equations with variable coefficients”, Journal of the Belarusian State University. Mathematics and Informatics, 2023, no. 3, 53–62 (in Russian)

[16] Orszag S. A., “Spectral methods for problems in complex geometrics”, Numerical methods for partial differential equations, Academic Press, 1979, 273–305 | DOI | MR

[17] Van der Vorst H. A., “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems”, SIAM Journal on scientific and Statistical Computing, 13:2 (1992), 631–644 | DOI | MR

[18] Volkov V. M., Prokonina E. V., “Raznostnye skhemy i iteratsionnye metody dlya mnogomernykh ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 54:4 (2019), 454–459 | MR

[19] Samarskii A. A., Mazhukin V. I., Matus P. P., Shishkin G. I., “Monotone difference schemes for equations with mixed derivatives”, Mathematical Modeling, 13:2 (2001), 17–26 | MR