Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2024_32_2_a7, author = {V. M. Volkov and Dong Jinghui}, title = {On the implementation of the {Chebyshev} spectral method for two-dimensional elliptic equations with mixed derivatives}, journal = {Trudy Instituta matematiki}, pages = {82--92}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/} }
TY - JOUR AU - V. M. Volkov AU - Dong Jinghui TI - On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives JO - Trudy Instituta matematiki PY - 2024 SP - 82 EP - 92 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/ LA - ru ID - TIMB_2024_32_2_a7 ER -
%0 Journal Article %A V. M. Volkov %A Dong Jinghui %T On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives %J Trudy Instituta matematiki %D 2024 %P 82-92 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/ %G ru %F TIMB_2024_32_2_a7
V. M. Volkov; Dong Jinghui. On the implementation of the Chebyshev spectral method for two-dimensional elliptic equations with mixed derivatives. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 82-92. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a7/
[1] Samarski A. A., Andreev V. B., Finite-difference methods for elliptical equations, Nauka, M., 1976 (in Russian)
[2] Ciarlet P. G., The finite element method for elliptic problems, Society for Industrial and Applied Mathematics, 2002 | MR
[3] Samarski A. A., Nikolaev E. S., Methods for Solving Grid Equations, Nauka, M., 1978 (in Russian)
[4] Hackbusch W., Multi-grid methods and applications, v. 4, Springer Science. Business Media, 2013
[5] D'yakonov E. G., Optimization in solving elliptic problems, CRC Press, 2018 | MR
[6] Boyd J. P., Chebyshev and Fourier spectral methods, Courier Corporation, 2001 | MR
[7] Trefethen L. N., Spectral Methods in MATLAB, SIAM, Philadelphia, 2000 | MR
[8] Simoncini V., “Computational methods for linear matrix equations”, SIAM REVIEW, 58:3 (2016), 377–441 | DOI | MR
[9] Peaceman D. W., Rachford Jr H. H., “The numerical solution of parabolic and elliptic differential equations”, Journal of the Society for Industrial and Applied Mathematics, 3:1 (1955), 28–41 | DOI | MR
[10] Benner P., Li R. C., Truhar N., “On the ADI method for Sylvester equations”, Journal of Computational and Applied Mathematics, 233:4 (2009), 1035–1045 | DOI | MR
[11] Fortunato D., Townsend A., “Fast Poisson solvers for spectral methods”, IMA Journal of Numerical Analysis, 40:3 (2020), 1994–2018 | DOI | MR
[12] Bartels R. H., Stewart G. W., “Algorithm 432 [C2]: Solution of the matrix equation $AX + XB = C ~ [\mathrm{F}4]$”, Communications of the ACM, 15:9 (1972), 820–826 | DOI
[13] Damm T., “Direct methods and ADI preconditioned Krylov subspace methods for generalized Lyapunov equations”, Numerical Linear Algebra with Applications, 15:9 (2008), 853–871 | DOI | MR
[14] Jbilou K., “ADI preconditioned Krylov methods for large Lyapunov matrix equations”, Linear algebra and its applications, 432:10 (2010), 2473–2485 | DOI | MR
[15] Volkov V. M., Kachalouskaya E. I., “An iterative Chebyshev spectral solver for two-dimensional elliptic equations with variable coefficients”, Journal of the Belarusian State University. Mathematics and Informatics, 2023, no. 3, 53–62 (in Russian)
[16] Orszag S. A., “Spectral methods for problems in complex geometrics”, Numerical methods for partial differential equations, Academic Press, 1979, 273–305 | DOI | MR
[17] Van der Vorst H. A., “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems”, SIAM Journal on scientific and Statistical Computing, 13:2 (1992), 631–644 | DOI | MR
[18] Volkov V. M., Prokonina E. V., “Raznostnye skhemy i iteratsionnye metody dlya mnogomernykh ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 54:4 (2019), 454–459 | MR
[19] Samarskii A. A., Mazhukin V. I., Matus P. P., Shishkin G. I., “Monotone difference schemes for equations with mixed derivatives”, Mathematical Modeling, 13:2 (2001), 17–26 | MR