Blow-up in difference schemes that approximate Neumann problems for nonlinear parabolic equations
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, based on the discrete analogue of comparison theorems and Jensen's inequality, blow-up conditions and upper bound of blow-up time of the solution of implicit finite-different problem which approximates Neumann problems for various nonlinear parabolic equations are obtained. Blow-up conditions and upper bound of blow-up time of approximated differential problems are given, which are obtained and based on comparison theorems and Jensen's inequality.
Keywords: comparison theorems, blow-up, discrete analogue of comparison theorems, nonlinear parabolic equations.
@article{TIMB_2024_32_2_a3,
     author = {D. A. Schadinskii},
     title = {Blow-up in difference schemes that approximate {Neumann} problems for nonlinear parabolic equations},
     journal = {Trudy Instituta matematiki},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/}
}
TY  - JOUR
AU  - D. A. Schadinskii
TI  - Blow-up in difference schemes that approximate Neumann problems for nonlinear parabolic equations
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 43
EP  - 55
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/
LA  - ru
ID  - TIMB_2024_32_2_a3
ER  - 
%0 Journal Article
%A D. A. Schadinskii
%T Blow-up in difference schemes that approximate Neumann problems for nonlinear parabolic equations
%J Trudy Instituta matematiki
%D 2024
%P 43-55
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/
%G ru
%F TIMB_2024_32_2_a3
D. A. Schadinskii. Blow-up in difference schemes that approximate Neumann problems for nonlinear parabolic equations. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 43-55. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/

[1] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u\sb t =\Delta u+u\sp{1+\alpha}$”, J. Fac. Sci., Univ. Tokyo, Sect. I, 13 (1966), 109–124 | MR

[2] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+ {\mathfrak F} (u)$”, Arch. Ration. Mech. Anal., 51 (1973), 371–386 | DOI | MR

[3] Nakagawa T., “Blowing up of a finite difference solution to $u_t=u_{xx}+u^2$”, Appl. Math. Optim., 2 (1976), 337–350 | DOI | MR

[4] Chen Y., “Asymptotic behaviours of blowing-up solutions for finite difference analogue of $u\sb t=u\sb{xx}+u\sp{1+\alpha}$”, J. Fac. Sci., Univ. Tokyo, Sect. I A, 33 (1986), 541–574 | MR

[5] Hartman P., Ordinary differential equations, John Wiley and Sons, Inc., New York–London–Sydney, 1964, 612 pp. | MR

[6] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Blow-Up in Quasilinear Parabolic Equations, De Gruyter, Berlin–New York, 1995, 554 pp. | MR

[7] Matus P. P., Paradzinska A., Schadinsky D. A., “Discrete analogs of the theorems comparison and their applications”, Doklady of the National Academy of Sciences of Belarus, 57:4 (2013), 16–20 (in Russian) | MR