Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2024_32_2_a3, author = {D. A. Schadinskii}, title = {Blow-up in difference schemes that approximate {Neumann} problems for nonlinear parabolic equations}, journal = {Trudy Instituta matematiki}, pages = {43--55}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/} }
TY - JOUR AU - D. A. Schadinskii TI - Blow-up in difference schemes that approximate Neumann problems for nonlinear parabolic equations JO - Trudy Instituta matematiki PY - 2024 SP - 43 EP - 55 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/ LA - ru ID - TIMB_2024_32_2_a3 ER -
D. A. Schadinskii. Blow-up in difference schemes that approximate Neumann problems for nonlinear parabolic equations. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 43-55. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a3/
[1] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u\sb t =\Delta u+u\sp{1+\alpha}$”, J. Fac. Sci., Univ. Tokyo, Sect. I, 13 (1966), 109–124 | MR
[2] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+ {\mathfrak F} (u)$”, Arch. Ration. Mech. Anal., 51 (1973), 371–386 | DOI | MR
[3] Nakagawa T., “Blowing up of a finite difference solution to $u_t=u_{xx}+u^2$”, Appl. Math. Optim., 2 (1976), 337–350 | DOI | MR
[4] Chen Y., “Asymptotic behaviours of blowing-up solutions for finite difference analogue of $u\sb t=u\sb{xx}+u\sp{1+\alpha}$”, J. Fac. Sci., Univ. Tokyo, Sect. I A, 33 (1986), 541–574 | MR
[5] Hartman P., Ordinary differential equations, John Wiley and Sons, Inc., New York–London–Sydney, 1964, 612 pp. | MR
[6] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Blow-Up in Quasilinear Parabolic Equations, De Gruyter, Berlin–New York, 1995, 554 pp. | MR
[7] Matus P. P., Paradzinska A., Schadinsky D. A., “Discrete analogs of the theorems comparison and their applications”, Doklady of the National Academy of Sciences of Belarus, 57:4 (2013), 16–20 (in Russian) | MR