A fundamental domain in the special linear group $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis
Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 7-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of developing the mathematical foundations of modular secret sharing in the special linear group over the ring of polynomials in one variable over the finite Galois field with $p$ elements is being solved. Secret sharing schemes should meet a large number of requirements: perfectness and ideality of a scheme, possibility of verification, changing a threshold without participation of a dealer, implementation of a non-threshold access structure and some others. Every secret sharing scheme developed to date does not fully satisfy all these requirements. The development of a scheme on a new mathematical basis is intended to expand the list of these configurations, thereby creating more possibilities for a user to choose the optimal option. A fundamental domain with respect to the action of the main congruence subgroup by right shifts in the special linear group of dimension 2 over the ring of polynomials is constructed. On this basis, methods for modular threshold secret sharing and its reconstruction are proposed.
Keywords: a special linear group, a congruence subgroup, a fundamental domain, modular secret sharing, a threshold access structure.
@article{TIMB_2024_32_2_a0,
     author = {G. V. Matveev and A. A. Osinovskaya and V. I. Yanchevskiǐ},
     title = {A fundamental domain in the special linear group  $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis},
     journal = {Trudy Instituta matematiki},
     pages = {7--16},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/}
}
TY  - JOUR
AU  - G. V. Matveev
AU  - A. A. Osinovskaya
AU  - V. I. Yanchevskiǐ
TI  - A fundamental domain in the special linear group  $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 7
EP  - 16
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/
LA  - ru
ID  - TIMB_2024_32_2_a0
ER  - 
%0 Journal Article
%A G. V. Matveev
%A A. A. Osinovskaya
%A V. I. Yanchevskiǐ
%T A fundamental domain in the special linear group  $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis
%J Trudy Instituta matematiki
%D 2024
%P 7-16
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/
%G ru
%F TIMB_2024_32_2_a0
G. V. Matveev; A. A. Osinovskaya; V. I. Yanchevskiǐ. A fundamental domain in the special linear group  $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 7-16. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/

[1] Cramer R., Damgard I., Nielsen J., “Multiparty computation from threshold homomorphic encryption”, LNCS, 2045, 2001, 280–300 | DOI | MR

[2] Bethencourt J., Sahai A., Waters B., “Ciphertext-policy attribute-based encryption”, 2007 IEEE Symposium on Security and Privacy (SP'07), IEEE, 2007, 321–334 | DOI

[3] Benaloh J., “Secret sharing homomorphisms: keeping shares of a secret sharing”, LNCS, 263, 1987, 251–260 | DOI | MR

[4] Shamir A., “How to share a secret”, Communications of the ACM, 22 (1979), 612–613 | DOI | MR

[5] Asmuth C., Bloom J., “A modular approach to key safeguarding”, IEEE Transactions on Information Theory, 29 (1983), 156–169 | DOI | MR

[6] Mignotte M., “How to share a secret”, LNCS, 149, 1983, 371–375 | DOI | MR

[7] Galibus T., Matveev G., Shenets N., “Some structural and security properties of the modular secret sharing”, Proceedings of SYNASC'08, IEEE, Los Alamitos, 2009, 197–200 | DOI

[8] Galibus T., Matveev G., “Generalized Mignotte's sequences over polynomial rings”, Electronic Notes in Theoretical Computer Science, 186 (2007), 43–48 | DOI | MR

[9] Galibus T., Matveev G., “Finite fields, Gröbner bases and modular secret sharing”, Journal of Discrete Mathematical Sciences and Cryptography, 15 (2012), 339–348 | DOI | MR

[10] Vaskouski M. M., Matveev G. V., “Verification of modular secret sharing”, Journal of the Belarusian State University. Mathematics and Informatics, 2017, no. 2, 17–22 (in Russian) | MR

[11] Matveev G. V., Matulis V. V., “Perfect verification of modular scheme”, Journal of the Belarusian State University. Mathematics and Informatics, 2018, no. 2, 4–9 (in Russian)

[12] Yanchevski\u{i} V. I., Havarushka I. A., Matveev G. V., “Secret sharing in a special linear group”, Informatics, 21:3 (2024), 23–31 (in Russian) | DOI | DOI

[13] Rosen M., Number theory in function fields, Springer-Verlag, New York, 2002, 358 pp. | MR

[14] Taylor D. E., The geometry of the classical groups, Herdelmann Verlag, Berlin, 1992, 229 pp. | MR

[15] Nagao H., “On $GL(2;K[X])$”, Journal of the Institute of Polytechnics, Osaka City University. Series A: Mathematics, 10 (1959), 117–121 | MR

[16] Platonov V. P., Rapinchuk A. S., Algebraic groups and number theory, Nauka, M., 1991, 656 pp. (in Russian) | MR