Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2024_32_2_a0, author = {G. V. Matveev and A. A. Osinovskaya and V. I. Yanchevskiǐ}, title = {A fundamental domain in the special linear group $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis}, journal = {Trudy Instituta matematiki}, pages = {7--16}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/} }
TY - JOUR AU - G. V. Matveev AU - A. A. Osinovskaya AU - V. I. Yanchevskiǐ TI - A fundamental domain in the special linear group $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis JO - Trudy Instituta matematiki PY - 2024 SP - 7 EP - 16 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/ LA - ru ID - TIMB_2024_32_2_a0 ER -
%0 Journal Article %A G. V. Matveev %A A. A. Osinovskaya %A V. I. Yanchevskiǐ %T A fundamental domain in the special linear group $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis %J Trudy Instituta matematiki %D 2024 %P 7-16 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/ %G ru %F TIMB_2024_32_2_a0
G. V. Matveev; A. A. Osinovskaya; V. I. Yanchevskiǐ. A fundamental domain in the special linear group $SL_2(\mathbb{f}_p[x])$ and secret sharing on its basis. Trudy Instituta matematiki, Tome 32 (2024) no. 2, pp. 7-16. http://geodesic.mathdoc.fr/item/TIMB_2024_32_2_a0/
[1] Cramer R., Damgard I., Nielsen J., “Multiparty computation from threshold homomorphic encryption”, LNCS, 2045, 2001, 280–300 | DOI | MR
[2] Bethencourt J., Sahai A., Waters B., “Ciphertext-policy attribute-based encryption”, 2007 IEEE Symposium on Security and Privacy (SP'07), IEEE, 2007, 321–334 | DOI
[3] Benaloh J., “Secret sharing homomorphisms: keeping shares of a secret sharing”, LNCS, 263, 1987, 251–260 | DOI | MR
[4] Shamir A., “How to share a secret”, Communications of the ACM, 22 (1979), 612–613 | DOI | MR
[5] Asmuth C., Bloom J., “A modular approach to key safeguarding”, IEEE Transactions on Information Theory, 29 (1983), 156–169 | DOI | MR
[6] Mignotte M., “How to share a secret”, LNCS, 149, 1983, 371–375 | DOI | MR
[7] Galibus T., Matveev G., Shenets N., “Some structural and security properties of the modular secret sharing”, Proceedings of SYNASC'08, IEEE, Los Alamitos, 2009, 197–200 | DOI
[8] Galibus T., Matveev G., “Generalized Mignotte's sequences over polynomial rings”, Electronic Notes in Theoretical Computer Science, 186 (2007), 43–48 | DOI | MR
[9] Galibus T., Matveev G., “Finite fields, Gröbner bases and modular secret sharing”, Journal of Discrete Mathematical Sciences and Cryptography, 15 (2012), 339–348 | DOI | MR
[10] Vaskouski M. M., Matveev G. V., “Verification of modular secret sharing”, Journal of the Belarusian State University. Mathematics and Informatics, 2017, no. 2, 17–22 (in Russian) | MR
[11] Matveev G. V., Matulis V. V., “Perfect verification of modular scheme”, Journal of the Belarusian State University. Mathematics and Informatics, 2018, no. 2, 4–9 (in Russian)
[12] Yanchevski\u{i} V. I., Havarushka I. A., Matveev G. V., “Secret sharing in a special linear group”, Informatics, 21:3 (2024), 23–31 (in Russian) | DOI | DOI
[13] Rosen M., Number theory in function fields, Springer-Verlag, New York, 2002, 358 pp. | MR
[14] Taylor D. E., The geometry of the classical groups, Herdelmann Verlag, Berlin, 1992, 229 pp. | MR
[15] Nagao H., “On $GL(2;K[X])$”, Journal of the Institute of Polytechnics, Osaka City University. Series A: Mathematics, 10 (1959), 117–121 | MR
[16] Platonov V. P., Rapinchuk A. S., Algebraic groups and number theory, Nauka, M., 1991, 656 pp. (in Russian) | MR