Numerical calculation of the effective thermal conductivity coefficient of particle-filled composite materials
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 86-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A comprehensive method has been developed for finding the effective thermal conductivity coefficients of dispersed-filled composite materials, taking into account their structure and depending on the thermophysical properties of temperature. Computational experiments were carried out.
Keywords: effective thermal conductivity coefficient, mathematical model, grid methods, computational experiment.
Mots-clés : composite
@article{TIMB_2024_32_1_a9,
     author = {A. N. Aulas},
     title = {Numerical calculation of the effective thermal conductivity coefficient of particle-filled composite materials},
     journal = {Trudy Instituta matematiki},
     pages = {86--96},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a9/}
}
TY  - JOUR
AU  - A. N. Aulas
TI  - Numerical calculation of the effective thermal conductivity coefficient of particle-filled composite materials
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 86
EP  - 96
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a9/
LA  - ru
ID  - TIMB_2024_32_1_a9
ER  - 
%0 Journal Article
%A A. N. Aulas
%T Numerical calculation of the effective thermal conductivity coefficient of particle-filled composite materials
%J Trudy Instituta matematiki
%D 2024
%P 86-96
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a9/
%G ru
%F TIMB_2024_32_1_a9
A. N. Aulas. Numerical calculation of the effective thermal conductivity coefficient of particle-filled composite materials. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 86-96. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a9/

[1] Dulnev G. N., Zarichnyak Y. P., Thermal conductivity of mixtures and composite materials, Energiya, L., 1974 (in Russian)

[2] Lyukshin B. A. et al., Dispersion-filled polymer composites for technical and medical purposes, Izdatelstvo SO RAN, Novosibirsk, 2017 (in Russian)

[3] Zarubin V. S., Engineering methods for solving thermal conductivity problems, Energoatomizdat, M., 1983 (in Russian)

[4] Nikitin A. V., Liopo V. A. Avdeychik S. V. Struck V. A., “Model representations of thermal conductance in polymer nanocomposites”, Scientific reports BSU. Ser. Mathematics. Physics, 5(176):34 (2014), 150–160 (in Russian)

[5] Kuptsov S. M., Determination of the thermal conductivity coefficient of thermal insulation materials using the plate method, RGU nefti i gaza, M., 2003 (in Russian)

[6] Samarskii A. A., The theory of difference schemes, Nauka, M., 1977 (in Russian)

[7] Zinoviev V. E., Thermophysical properties of metals at high temperatures, Metallurgiya, M., 1989 (in Russian)