On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups under consideration are finite. Let $\sigma =\{\sigma_{i} \mid i\in I \}$ be some partition of the set of all primes, $G$ be a group, $\sigma (G)=\{\sigma_i\mid \sigma_i\cap \pi (G)\ne \varnothing\} $, $\mathfrak F$ be a class of groups, and $\sigma (\mathfrak{F})=\bigcup\limits_{G\in \mathfrak{F}}\sigma (G).$ A function $f$ of the form $f:\sigma \to\{\text{formations of groups}\}$ is called a formation $\sigma$-function. For any formation $\sigma$-function $f$ the class $LF_{\sigma}(f)$ is defined as follows: $ LF_{\sigma}(f)=(G \mid G=1 \ \text{or }\ G\ne 1\ \text{and }G/O_{\sigma_i', \sigma_i}(G) \in f(\sigma_{i}) \ \text{ for all } \sigma_i \in \sigma(G)). $ If for some formation $\sigma$-function $f$ we have $\mathfrak{F}=LF_{\sigma}(f),$ then the class $\mathfrak{F}$ is called $\sigma $-local and $f$ is called a $\sigma$-local definition of $ \mathfrak{F}.$ Every formation is called $0$-multiply $\sigma $-local. For $n \geqslant 1,$ a formation $\mathfrak{F}$ is called $n$-multiply $\sigma $-local provided either $\mathfrak{F}=(1)$ is the class of all identity groups or $\mathfrak{F}=LF_{\sigma}(f),$ where $f(\sigma_i)$ is $(n-1)$-multiply $\sigma$-local for all $\sigma_i\in \sigma (\mathfrak{F}).$ Let $\tau(G)$ be a set of subgroups of $G$ such that $G\in \tau(G).$ Then $\tau$ is called a {subgroup functor} if for every epimorphism $\varphi$ : $A \to~B$ and any groups $H \in \tau (A)$ and $T\in \tau (B)$ we have $H^{\varphi}\in\tau(B)$ and $T^{{\varphi}^{-1}}\in\tau(A).$ A class of groups $\mathfrak{F}$ is called {$\tau$-closed} if $\tau(G)\subseteq\mathfrak{F}$ for all $G\in\mathfrak F.$ In this paper, necessary and sufficient conditions for $n$-multiply $\sigma$-locality $(n\geqslant 1)$ of a non-empty $\tau$-closed formation are obtained.
Keywords: finite group, subgroup functor, $\sigma$-local formation, $\tau$-closed formation.
Mots-clés : formations
@article{TIMB_2024_32_1_a4,
     author = {I. N. Safonova},
     title = {On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a4/}
}
TY  - JOUR
AU  - I. N. Safonova
TI  - On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 31
EP  - 37
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a4/
LA  - ru
ID  - TIMB_2024_32_1_a4
ER  - 
%0 Journal Article
%A I. N. Safonova
%T On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups
%J Trudy Instituta matematiki
%D 2024
%P 31-37
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a4/
%G ru
%F TIMB_2024_32_1_a4
I. N. Safonova. On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a4/

[1] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A. N. Skiba, “On one generalization of the local formations”, Probl. Phys. Math. Tech., 2018, no. 1(34), 79–82 | MR | Zbl

[3] Z. Chi, A. N. Skiba, “On ${\Sigma}_{t}^{\sigma}$-closed classes of finite groups”, Ukranian Math. J., 70:12 (2019), 1966–1977 | DOI | MR | Zbl

[4] Z. Chi, A. N. Skiba, “A generalization of Kramer's theory”, Acta Math. Hungar., 158:1 (2019), 87–99 | DOI | MR | Zbl

[5] Z. Chi, V. G. Safonov, A. N. Skiba, “On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups”, Probl. Phys. Math. Tech., 2018, no. 2(35), 85–88 | MR | Zbl

[6] Z. Chi, V. G. Safonov, A. N. Skiba, “On $n$-multiply $\sigma$-local formations of finite groups”, Comm. Algebra, 47:3 (2019), 957–968 | DOI | MR | Zbl

[7] A. N. Skiba, Algebra of formations, Belaruskaya Navuka, Minsk, 1997 (in Russian)

[8] I. N. Safonova, On $\tau$-closed $n$-multiply $\sigma$-local formations of finite groups, Cornell University Library, 29 pp., arXiv: (Accessed 2 May 2021) 2105.00430 [math.GR] | DOI

[9] I. N. Safonova, “Some properties of $n$-multiply $\sigma$-local formations of finite groups”, Asian-European Journal of Mathematics, 15:7 (2022), 2250138 | DOI | MR | Zbl

[10] I. N. Safonova, “On properties of the lattice of all $\tau$-closed $n$-multiply $\sigma$-local formations”, Comm. Algebra, 51:10 (2023), 4454–4461 | DOI | MR | Zbl

[11] I. N. Safonova, “On $\sigma$-inductive lattices of $n$-multiply $\sigma$-local formations of finite groups”, J. Algebra and Its Applications, 23:1 (2024), 2450017 | DOI | MR | Zbl

[12] I. N. Safonova, “On the $\tau$-closedness of $n$-multiply $\sigma$-local formation”, Advances in Group Theory and Applications, 18 (2024), 123–136 | MR

[13] I. N. Safonova, “A criterion for $\sigma$-locality of a non-empty formation”, Comm. Algebra, 50:6 (2022), 2366–2376 | DOI | MR | Zbl

[14] I. N. Safonova, V. G. Safonov, “On some properties of the lattice of totally $\sigma$-local formations of finite groups”, Journal of the Belarusian State University. Mathematics and Informatics, 2020, no. 3, 6–16 | MR

[15] V. G. Safonov, “Characterization of the soluble one-generated totally saturated formations of finite groups”, Sib. Math. J., 48:1 (2007), 150–155 | DOI | MR | Zbl