Lattice characterizations of soluble and supersoluble finite groups
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 17-24

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and ${\mathscr L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and $1, G\in {\mathscr L}$ be a sublattice of ${\mathscr L}_{sn}(G)$, that is, $A\cap B$, $\langle A, B \rangle \in {\mathscr L}$ for all $A, B \in {\mathscr L} \subseteq {\mathscr L}_{sn}(G)$. Then: $A^{{\mathscr L}}$ is the $\mathscr L$-closure of $A$ in $G$, that is, the intersection of all subgroups in $ {\mathscr L}$ containing $A$ and $A_{{\mathscr L}}$ is the $\mathscr L$-core of $A$ in $G$, that is, the subgroup of $A$ generated by all subgroups of $A$ belonging $\mathscr L$. We say that $A$ is an $N$-${\mathscr L}$-subgroup of $G$ if either $A\in {\mathscr L}$ or $A_{{\mathscr L}} A A^{\mathscr L}$ and $N$ avoids every composition factor $H/K$ of $G$ between $A_{{\mathscr L}}$ and $ A^{\mathscr L}$, that is, $N\cap H=N\cap K$. Using this concept, we give new characterizations of soluble and supersoluble finite groups. Some know results are extended.
Keywords: finite group, subgroup lattice, subnormal subgroup, $N$-${\mathscr L}$-subgroup, $N$-subnormal subgroup.
@article{TIMB_2024_32_1_a2,
     author = {A. -M. Liu and S. Wang and V. G. Safonov and A. N. Skiba},
     title = {Lattice characterizations of soluble and supersoluble finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/}
}
TY  - JOUR
AU  - A. -M. Liu
AU  - S. Wang
AU  - V. G. Safonov
AU  - A. N. Skiba
TI  - Lattice characterizations of soluble and supersoluble finite groups
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 17
EP  - 24
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/
LA  - en
ID  - TIMB_2024_32_1_a2
ER  - 
%0 Journal Article
%A A. -M. Liu
%A S. Wang
%A V. G. Safonov
%A A. N. Skiba
%T Lattice characterizations of soluble and supersoluble finite groups
%J Trudy Instituta matematiki
%D 2024
%P 17-24
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/
%G en
%F TIMB_2024_32_1_a2
A. -M. Liu; S. Wang; V. G. Safonov; A. N. Skiba. Lattice characterizations of soluble and supersoluble finite groups. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/