Lattice characterizations of soluble and supersoluble finite groups
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and ${\mathscr L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and $1, G\in {\mathscr L}$ be a sublattice of ${\mathscr L}_{sn}(G)$, that is, $A\cap B$, $\langle A, B \rangle \in {\mathscr L}$ for all $A, B \in {\mathscr L} \subseteq {\mathscr L}_{sn}(G)$. Then: $A^{{\mathscr L}}$ is the $\mathscr L$-closure of $A$ in $G$, that is, the intersection of all subgroups in $ {\mathscr L}$ containing $A$ and $A_{{\mathscr L}}$ is the $\mathscr L$-core of $A$ in $G$, that is, the subgroup of $A$ generated by all subgroups of $A$ belonging $\mathscr L$. We say that $A$ is an $N$-${\mathscr L}$-subgroup of $G$ if either $A\in {\mathscr L}$ or $A_{{\mathscr L}} A A^{\mathscr L}$ and $N$ avoids every composition factor $H/K$ of $G$ between $A_{{\mathscr L}}$ and $ A^{\mathscr L}$, that is, $N\cap H=N\cap K$. Using this concept, we give new characterizations of soluble and supersoluble finite groups. Some know results are extended.
Keywords: finite group, subgroup lattice, subnormal subgroup, $N$-${\mathscr L}$-subgroup, $N$-subnormal subgroup.
@article{TIMB_2024_32_1_a2,
     author = {A. -M. Liu and S. Wang and V. G. Safonov and A. N. Skiba},
     title = {Lattice characterizations of soluble and supersoluble finite groups},
     journal = {Trudy Instituta matematiki},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/}
}
TY  - JOUR
AU  - A. -M. Liu
AU  - S. Wang
AU  - V. G. Safonov
AU  - A. N. Skiba
TI  - Lattice characterizations of soluble and supersoluble finite groups
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 17
EP  - 24
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/
LA  - en
ID  - TIMB_2024_32_1_a2
ER  - 
%0 Journal Article
%A A. -M. Liu
%A S. Wang
%A V. G. Safonov
%A A. N. Skiba
%T Lattice characterizations of soluble and supersoluble finite groups
%J Trudy Instituta matematiki
%D 2024
%P 17-24
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/
%G en
%F TIMB_2024_32_1_a2
A. -M. Liu; S. Wang; V. G. Safonov; A. N. Skiba. Lattice characterizations of soluble and supersoluble finite groups. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/

[1] Hall P., “On the system normalizers of a soluble group”, Proc. London Math. Soc., 43 (1938), 507–528 | DOI | MR

[2] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[3] Ezquerro L. M., “A contribution to the theory of finite supersolvable groups”, Rend. Sem. Math. Univ. Padova, 89 (1993), 161–170 | MR | Zbl

[4] Tang X., Guo W., “On partial $CAP^*$-subgroups of finite groups”, J. Algebra and Its Application, 16:1 (2017), 1750009 | DOI | MR | Zbl

[5] Guo W., Skiba A. N., Yang N., “A generalized $CAP$-subgroup of a finite group”, Science China. Mathematics, 58:10 (2015), 1–12 | DOI | MR

[6] Qian G., Zeng Yu., “On partial $CAP$-subgroups of finite groups”, J. Algebra, 546 (2020), 553–565 | DOI | MR | Zbl

[7] Li X., Lei D., “The semi $p$-cover-avoidance properties of $p$-sylowizers in finite groups”, Comm. Algebra, 49:11 (2021), 4588–4599 | DOI | MR | Zbl

[8] Wang Y., Miao L., Liu W., “On some second maximal subgroups of non-solvable groups”, Hacettepe Journal of Mathematics and Statistics, 52:2 (2023), 367–373 | DOI | MR | Zbl

[9] Skiba A. N. On sublattices of the subgroup lattice defined by formation Fitting sets, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[10] Ballester-Bolinches A., Beidleman J. C., Heineken H., “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois J. Math., 47:1–2, Special issue in honor of Reinhold Baer (1902–1979) (2003), 63–69 | MR | Zbl

[11] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[12] Kegel O. H., “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[13] Skiba A. N., “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[14] Guo W., Skiba A. N., “Finite groups with given $s$-embedded and $n$-embedded subgroups”, J. Algebra, 321 (2009), 2843–2860 | DOI | MR | Zbl

[15] Agrawal R. K., “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 47 (1975), 77–83 | DOI | MR | Zbl

[16] Chi Z., Skiba A. N., “On a lattice characterisation of finite soluble $PST$-group”, Bull. Austral. Math. Soc., 101:2 (2020), 247–254 | DOI | MR | Zbl

[17] Guo J., Guo W., Safonova I. N., Skiba A. N., “$G$-covering subgroup systems for the classes of finite soluble $PST$-groups”, Comm. Algebra, 49:9 (2021), 3872–3880 | DOI | MR | Zbl

[18] Wang Z., Liu A.-M., Safonov V. G., Skiba A. N., “A characterization of soluble $PST$-groups”, Bull. Austral. Math. Soc., 2024, 1–8 (published online) | DOI

[19] Schmidt R., Subgroup lattices of groups, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl

[20] Guo X., Shum K. P., “Cover-avoidance properties and the structure of finite groups”, J. Pure and Applied Algebra, 181 (2003), 297–308 | DOI | MR | Zbl

[21] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[22] Safonov V. G., Skiba A. N., Finite groups with systems of generalized normal subgroups, Preprint, 2024

[23] Agrawal R. K., “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 58:1 (1976), 13–21 | DOI | MR | Zbl

[24] Weinstein M., Between Nilpotent and Solvable, Polygonal Publishing House, 1982 | MR | Zbl

[25] Srinivasan S., “Two sufficient conditions for supersolvability of finite groups”, Israel J. Math., 35 (1980), 210–214 | DOI | MR | Zbl

[26] Buckley J., “Finite groups whose minimal subgroups are normal”, Math. Z., 15 (1970), 15–17 | DOI | MR | Zbl

[27] Aivazidis S., Safonova I. N., Skiba A. N., “Subnormality and residuals for saturated formations: A generalization of Schenkman's theorem”, J. Group Theory, 24:4 (2021), 807–818 | DOI | MR | Zbl

[28] Schenkman E., “On the tower theorem for finite groups”, Pac. J. Math., 5 (1955), 995–998 | DOI | MR | Zbl