Lattice characterizations of soluble and supersoluble finite groups
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 17-24
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group and ${\mathscr L}_{sn}(G)$ be the lattice of
all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and
$1, G\in {\mathscr L}$ be a sublattice of ${\mathscr L}_{sn}(G)$, that is, $A\cap B$, $\langle A, B
\rangle \in {\mathscr L}$ for all $A, B \in {\mathscr L} \subseteq {\mathscr L}_{sn}(G)$.
Then: $A^{{\mathscr L}}$ is the $\mathscr L$-closure of $A$ in $G$, that is,
the intersection of all subgroups in $ {\mathscr L}$ containing
$A$ and $A_{{\mathscr L}}$ is the $\mathscr L$-core of $A$ in $G$, that
is, the subgroup of $A$ generated by all subgroups of $A$ belonging $\mathscr L$.
We say that $A$ is an $N$-${\mathscr L}$-subgroup of $G$ if either
$A\in {\mathscr L}$ or $A_{{\mathscr L}} A A^{\mathscr L}$ and $N$ avoids every
composition factor $H/K$ of $G$ between $A_{{\mathscr L}}$ and $ A^{\mathscr L}$, that is,
$N\cap H=N\cap K$.
Using this concept, we give new characterizations of soluble and
supersoluble finite groups.
Some know results are extended.
Keywords:
finite group, subgroup lattice, subnormal subgroup, $N$-${\mathscr L}$-subgroup,
$N$-subnormal subgroup.
@article{TIMB_2024_32_1_a2,
author = {A. -M. Liu and S. Wang and V. G. Safonov and A. N. Skiba},
title = {Lattice characterizations of soluble and supersoluble finite groups},
journal = {Trudy Instituta matematiki},
pages = {17--24},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/}
}
TY - JOUR AU - A. -M. Liu AU - S. Wang AU - V. G. Safonov AU - A. N. Skiba TI - Lattice characterizations of soluble and supersoluble finite groups JO - Trudy Instituta matematiki PY - 2024 SP - 17 EP - 24 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/ LA - en ID - TIMB_2024_32_1_a2 ER -
A. -M. Liu; S. Wang; V. G. Safonov; A. N. Skiba. Lattice characterizations of soluble and supersoluble finite groups. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a2/