Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2024_32_1_a11, author = {P. P. Matus and V. T. K. Tuyen}, title = {Three-layer of compact difference schemes for the parabolic equation}, journal = {Trudy Instituta matematiki}, pages = {110--120}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a11/} }
TY - JOUR AU - P. P. Matus AU - V. T. K. Tuyen TI - Three-layer of compact difference schemes for the parabolic equation JO - Trudy Instituta matematiki PY - 2024 SP - 110 EP - 120 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a11/ LA - ru ID - TIMB_2024_32_1_a11 ER -
P. P. Matus; V. T. K. Tuyen. Three-layer of compact difference schemes for the parabolic equation. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 110-120. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a11/
[1] Samarskii A. A., Vabishchevich P. N., Matus P. P., Difference schemes with operator factors Dordrecht, 2002, 348 pp.
[2] Samarskii A. A, M., 1989, 616 pp. (in Russian)
[3] Samarskii A. A., “Schemes of high-order accuracy for the multi-dimensional heat conduction equation”, USSR Computational Mathematics and Mathematical Physics, 3:5 (1963), 1107–1146 | DOI | MR | Zbl
[4] Matus P. P., Utebaev B. D., “Compact and monotone difference schemes for parabolic equations”, Mathematical Models and Computer Simulations, 13 (2021), 1038–1048 | DOI | DOI | MR | Zbl
[5] Matus P. P., Anh H. Th. K., “Compact difference schemes on a three-point stencil for second-order hyperbolic equations”, Differential Equations, 57:7 (2021), 934–946 | DOI | DOI | MR | Zbl
[6] Matus P. P., Utebaev B. D., “Compact and monotone difference schemes for the generalized Fisher equation”, Differential Equations, 58:7 (2022), 937–951 | DOI | MR
[7] Matus P. P., Gromyko G. Ph., Utebaev B. D., “Conservative compact and monotone fourth order difference schemes for quasilinear equations”, Doklady of the National Academy of Sciences of Belarus, 68:1 (2024), 7–14 (in Russian) | DOI
[8] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Modes with blow-up in problems for quasilinear parabolic equations, Nauka Publ., M., 1987 (in Russian)
[9] Saul'ev V. K., Integration of equations of parabolic type by the grid method, Fizmatgiz, M., 1960 (in Russian)
[10] Wang T., “Convergence of an eight-order compact difference scheme for the nonlinear Schrodinger equation”, Advances in Numerical Analysis, 2012 (2012), 1–24 | DOI | MR
[11] Polevikov V. K., “A monotone finite-difference high order accuracy scheme for the 2D convection–diffusion equations”, Journal of the Belarusian State University. Mathematics and Informatics, 2019, no. 3, 71–83 | DOI
[12] Samarskii A. A., “Parabolic equations with discontinuity coefficients”, Dokl. Akad. Nauk SSSR, 121 (1958), 225–228 (in Russian) | Zbl