Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case
Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes a relationship between the values of two integer polynomials without common roots on disjoint intervals of fixed length with the main characteristics of the polynomials – degree and height. The proved theorem can be considered as a two-dimensional generalization of Gelfond's lemma from the theory of transcendental numbers. The theorem can be used to estimate from above the Hausdorff dimension of a set of vectors that are approximated by conjugate algebraic numbers in a given order.
Mots-clés : diophantine approximation
Keywords: integral polynomial, algebraic numbers, Dirichlet’s theorem, reducible polynomials.
@article{TIMB_2024_32_1_a1,
     author = {N. I. Kalosha and Zh. I. Panteleeva},
     title = {Generalization of {Gelfond{\textquoteright}s} lemma on small values of integer polynomials to the multidimensional case},
     journal = {Trudy Instituta matematiki},
     pages = {10--16},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/}
}
TY  - JOUR
AU  - N. I. Kalosha
AU  - Zh. I. Panteleeva
TI  - Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case
JO  - Trudy Instituta matematiki
PY  - 2024
SP  - 10
EP  - 16
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/
LA  - ru
ID  - TIMB_2024_32_1_a1
ER  - 
%0 Journal Article
%A N. I. Kalosha
%A Zh. I. Panteleeva
%T Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case
%J Trudy Instituta matematiki
%D 2024
%P 10-16
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/
%G ru
%F TIMB_2024_32_1_a1
N. I. Kalosha; Zh. I. Panteleeva. Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 10-16. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/

[1] L. G. P. Dirichlet, “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, Werke, v. I, 1842, 633–638

[2] A. Khintchine, “Einige Satze uber Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Mathematische Annalen, 92 (1924), 115–125 | DOI | MR

[3] K. Mahler, “Uber das Maß der Menge aller S-Zahlen”, Math. Ann, 106 (1932), 131–139 | DOI | MR | Zbl

[4] V. G. Sprindzuk, “On a Conjecture of Mahler”, Soviet Math., 1 (1964), 183–187 | MR | Zbl

[5] V. G. Sprindzuk, “A Proof of Mahler's Conjecture on the Measure of the Set of S-numbers”, Izv. Akad. Nauk SSSR Ser. Mat., 29 (1965), 379–436 (in Russian) | MR | Zbl

[6] V. G. Sprindzuk, Mahler's Problem in Metric Number Theory, American Mathematical Society, Providence, R.I., 1969, 204 pp. | MR | MR

[7] V. I. Bernik, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | DOI | MR | Zbl

[8] V. V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112 | DOI | MR

[9] B. I. Ptashnik, Ill-posed Boundary-value Problems for Partial Differential Equations, Naukova Dumka, Kyiv, 1984, 264 pp. (in Russian) | MR

[10] Arnold V. I., “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics”, Russian Mathematical Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl

[11] V. Beresnevich, S. Velani, “Number theory meets wireless communications: an introduction for dummies like us”, Number Theory Meets Wireless Communications, eds. Beresnevich V., Burr A., Nazer B., Velani S., Springer, 2020, 1–67 | DOI | MR | Zbl

[12] F. Hausdorff, “Die Machtigkeit der Borelschen Mengen”, Mathematische Annalen, 77:3 (1916), 430–437 | DOI | MR

[13] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proceedings of the London Mathematical Society, 21 (1970), 1–11 | DOI | MR | Zbl

[14] V. I. Bernik, “Use of Hausdorff Dimension in the Theory of Diophantine Approximations”, Acta Arith, 42:3 (1983), 219–253 (in Russian) | DOI | MR | Zbl

[15] Gelfond A. O., Transcendental and Algebraic Numbers, Dover Publications Inc, New York, 1960, 190 pp. | MR | MR | Zbl

[16] V. I. Bernik, N. I. Kalosha, “Approximation of zero by values of integer polynomials in the space $\mathbb{C}\times\mathbb{Q}_p$”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2004, no. 1, 121–123 (in Russian)

[17] V. I. Bernik, D. V. Vasilyev, N. I. Kalosha, Zh. I. Panteleeva, “Metric Theory of Diophantine Approximation and Asymptotic Estimates for the Number of Polynomials with Given Discriminants Divisible by a Large Power of a Prime Number”, Doklady of the National Academy of Sciences of Belarus, 67:4 (2023), 271–278 (in Russian) | DOI | MR

[18] V. I. Bernik, “A Metric Theorem on the Simultaneous Approximation of a Zero by the Values Of Integral Polynomials”, Mathematics of the USSR-Izvestiya, 16:1 (1981), 21–40 | DOI | MR | Zbl | Zbl

[19] N. Budarina, V. I. Bernik, D. Dickinson, “A divergent Khintchine Theorem in the real, complex and p-adic fields”, Lithuanian Mathematical Journal, 48:2 (2008), 1–16 | DOI | MR

[20] N. Budarina, D. Dickinson, “Diophantine approximation on non degenerate curves with non monotonic error function”, Bulletin London Math. Soc., 41:1 (2009), 137–146 | DOI | MR | Zbl

[21] N. Budarina, V. I. Bernik, D. Dickinson, “Simultaneous Diophantine approximation in the real, complex and p-adic fields”, Proc. Math. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[22] N. Budarina, D. Dickinson, “Simultaneous Diophantine Approximation in two metrics and the distance between conjugate algebraic numbers in $\mathbb{C}\times\mathbb{Q}_p$”, Indagationes Mathematicae, 23 (2012), 32–41 | DOI | MR | Zbl

[23] V. Beresnevich, V. Bernik, N. Budarina, Systems of small linear forms and diophantine approximation on manifolds, 2017, arXiv: (accessed 16.07.2024) 1707.00371