Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2024_32_1_a1, author = {N. I. Kalosha and Zh. I. Panteleeva}, title = {Generalization of {Gelfond{\textquoteright}s} lemma on small values of integer polynomials to the multidimensional case}, journal = {Trudy Instituta matematiki}, pages = {10--16}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/} }
TY - JOUR AU - N. I. Kalosha AU - Zh. I. Panteleeva TI - Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case JO - Trudy Instituta matematiki PY - 2024 SP - 10 EP - 16 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/ LA - ru ID - TIMB_2024_32_1_a1 ER -
%0 Journal Article %A N. I. Kalosha %A Zh. I. Panteleeva %T Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case %J Trudy Instituta matematiki %D 2024 %P 10-16 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/ %G ru %F TIMB_2024_32_1_a1
N. I. Kalosha; Zh. I. Panteleeva. Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case. Trudy Instituta matematiki, Tome 32 (2024) no. 1, pp. 10-16. http://geodesic.mathdoc.fr/item/TIMB_2024_32_1_a1/
[1] L. G. P. Dirichlet, “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, Werke, v. I, 1842, 633–638
[2] A. Khintchine, “Einige Satze uber Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Mathematische Annalen, 92 (1924), 115–125 | DOI | MR
[3] K. Mahler, “Uber das Maß der Menge aller S-Zahlen”, Math. Ann, 106 (1932), 131–139 | DOI | MR | Zbl
[4] V. G. Sprindzuk, “On a Conjecture of Mahler”, Soviet Math., 1 (1964), 183–187 | MR | Zbl
[5] V. G. Sprindzuk, “A Proof of Mahler's Conjecture on the Measure of the Set of S-numbers”, Izv. Akad. Nauk SSSR Ser. Mat., 29 (1965), 379–436 (in Russian) | MR | Zbl
[6] V. G. Sprindzuk, Mahler's Problem in Metric Number Theory, American Mathematical Society, Providence, R.I., 1969, 204 pp. | MR | MR
[7] V. I. Bernik, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | DOI | MR | Zbl
[8] V. V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 50:2 (1999), 97–112 | DOI | MR
[9] B. I. Ptashnik, Ill-posed Boundary-value Problems for Partial Differential Equations, Naukova Dumka, Kyiv, 1984, 264 pp. (in Russian) | MR
[10] Arnold V. I., “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics”, Russian Mathematical Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl
[11] V. Beresnevich, S. Velani, “Number theory meets wireless communications: an introduction for dummies like us”, Number Theory Meets Wireless Communications, eds. Beresnevich V., Burr A., Nazer B., Velani S., Springer, 2020, 1–67 | DOI | MR | Zbl
[12] F. Hausdorff, “Die Machtigkeit der Borelschen Mengen”, Mathematische Annalen, 77:3 (1916), 430–437 | DOI | MR
[13] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proceedings of the London Mathematical Society, 21 (1970), 1–11 | DOI | MR | Zbl
[14] V. I. Bernik, “Use of Hausdorff Dimension in the Theory of Diophantine Approximations”, Acta Arith, 42:3 (1983), 219–253 (in Russian) | DOI | MR | Zbl
[15] Gelfond A. O., Transcendental and Algebraic Numbers, Dover Publications Inc, New York, 1960, 190 pp. | MR | MR | Zbl
[16] V. I. Bernik, N. I. Kalosha, “Approximation of zero by values of integer polynomials in the space $\mathbb{C}\times\mathbb{Q}_p$”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2004, no. 1, 121–123 (in Russian)
[17] V. I. Bernik, D. V. Vasilyev, N. I. Kalosha, Zh. I. Panteleeva, “Metric Theory of Diophantine Approximation and Asymptotic Estimates for the Number of Polynomials with Given Discriminants Divisible by a Large Power of a Prime Number”, Doklady of the National Academy of Sciences of Belarus, 67:4 (2023), 271–278 (in Russian) | DOI | MR
[18] V. I. Bernik, “A Metric Theorem on the Simultaneous Approximation of a Zero by the Values Of Integral Polynomials”, Mathematics of the USSR-Izvestiya, 16:1 (1981), 21–40 | DOI | MR | Zbl | Zbl
[19] N. Budarina, V. I. Bernik, D. Dickinson, “A divergent Khintchine Theorem in the real, complex and p-adic fields”, Lithuanian Mathematical Journal, 48:2 (2008), 1–16 | DOI | MR
[20] N. Budarina, D. Dickinson, “Diophantine approximation on non degenerate curves with non monotonic error function”, Bulletin London Math. Soc., 41:1 (2009), 137–146 | DOI | MR | Zbl
[21] N. Budarina, V. I. Bernik, D. Dickinson, “Simultaneous Diophantine approximation in the real, complex and p-adic fields”, Proc. Math. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl
[22] N. Budarina, D. Dickinson, “Simultaneous Diophantine Approximation in two metrics and the distance between conjugate algebraic numbers in $\mathbb{C}\times\mathbb{Q}_p$”, Indagationes Mathematicae, 23 (2012), 32–41 | DOI | MR | Zbl
[23] V. Beresnevich, V. Bernik, N. Budarina, Systems of small linear forms and diophantine approximation on manifolds, 2017, arXiv: (accessed 16.07.2024) 1707.00371