Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 28-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the article, all groups are finite. We say that a subgroup $A$ of $G$ is $\pi$-quasinormal in $G$, if $A$ is $1 \pi$-subnormal and modular in $G$. We prove that if the group $G$ is $\pi _{0}$-solvable, where $\pi _{0}=\pi (D) $ and $D$ is the $\pi $-special residual of $G$, and $\pi$-quasi-normality is a transitive relation in $G$, then $D$ is an abelian Hall subgroup of odd order in $G$.
@article{TIMB_2023_31_2_a3,
     author = {I. M. Dergacheva and E. A. Zadorozhnyuk and I. P. Shabalina},
     title = {Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/}
}
TY  - JOUR
AU  - I. M. Dergacheva
AU  - E. A. Zadorozhnyuk
AU  - I. P. Shabalina
TI  - Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 28
EP  - 33
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/
LA  - ru
ID  - TIMB_2023_31_2_a3
ER  - 
%0 Journal Article
%A I. M. Dergacheva
%A E. A. Zadorozhnyuk
%A I. P. Shabalina
%T Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
%J Trudy Instituta matematiki
%D 2023
%P 28-33
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/
%G ru
%F TIMB_2023_31_2_a3
I. M. Dergacheva; E. A. Zadorozhnyuk; I. P. Shabalina. Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 28-33. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/