Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 28-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Throughout the article, all groups are finite. We say that a subgroup $A$ of $G$ is $\pi$-quasinormal in $G$, if $A$ is $1 \pi$-subnormal and modular in $G$. We prove that if the group $G$ is $\pi _{0}$-solvable, where $\pi _{0}=\pi (D) $ and $D$ is the $\pi $-special residual of $G$, and $\pi$-quasi-normality is a transitive relation in $G$, then $D$ is an abelian Hall subgroup of odd order in $G$.
@article{TIMB_2023_31_2_a3,
author = {I. M. Dergacheva and E. A. Zadorozhnyuk and I. P. Shabalina},
title = {Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups},
journal = {Trudy Instituta matematiki},
pages = {28--33},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/}
}
TY - JOUR AU - I. M. Dergacheva AU - E. A. Zadorozhnyuk AU - I. P. Shabalina TI - Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups JO - Trudy Instituta matematiki PY - 2023 SP - 28 EP - 33 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/ LA - ru ID - TIMB_2023_31_2_a3 ER -
%0 Journal Article %A I. M. Dergacheva %A E. A. Zadorozhnyuk %A I. P. Shabalina %T Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups %J Trudy Instituta matematiki %D 2023 %P 28-33 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/ %G ru %F TIMB_2023_31_2_a3
I. M. Dergacheva; E. A. Zadorozhnyuk; I. P. Shabalina. Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 28-33. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/