Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the article, all groups are finite. We say that a subgroup $A$ of $G$ is $\pi$-quasinormal in $G$, if $A$ is $1 \pi$-subnormal and modular in $G$. We prove that if the group $G$ is $\pi _{0}$-solvable, where $\pi _{0}=\pi (D) $ and $D$ is the $\pi $-special residual of $G$, and $\pi$-quasi-normality is a transitive relation in $G$, then $D$ is an abelian Hall subgroup of odd order in $G$.
@article{TIMB_2023_31_2_a3,
     author = {I. M. Dergacheva and E. A. Zadorozhnyuk and I. P. Shabalina},
     title = {Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/}
}
TY  - JOUR
AU  - I. M. Dergacheva
AU  - E. A. Zadorozhnyuk
AU  - I. P. Shabalina
TI  - Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 28
EP  - 33
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/
LA  - ru
ID  - TIMB_2023_31_2_a3
ER  - 
%0 Journal Article
%A I. M. Dergacheva
%A E. A. Zadorozhnyuk
%A I. P. Shabalina
%T Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
%J Trudy Instituta matematiki
%D 2023
%P 28-33
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/
%G ru
%F TIMB_2023_31_2_a3
I. M. Dergacheva; E. A. Zadorozhnyuk; I. P. Shabalina. Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 28-33. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a3/

[1] Chunikhin S. A., Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964 | MR | Zbl

[2] Skiba A. N., “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[3] Skiba A. N., “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[4] Haiyan Li, A.-Ming Liu, Safonova I. N., Skiba A. N., “Characterizations of some classes of finite $\sigma$-soluble $P\sigma T$-groups”, Communications in Algebra | DOI | MR

[5] Zhang X.-F., Guo W., Safonova I. N., Skiba A. N., “A Robinson description of finite $P\sigma T$-groups”, J. Algebra, 631 (2023), 218–235 | DOI | MR | Zbl

[6] A-Ming Liu, Chen M., Safonova I. N., Skiba A. N., “Finite groups with modular $\sigma$-subnormal subgroups”, J. Group Theory, 2023 | DOI | MR

[7] Kegel O. H., “Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten”, Arch. Math., 30:3 (1978), 225–228 | DOI | MR | Zbl

[8] Ballester-Bolinches A., Ezquerro L. M., Classes of Finite groups, Springer, Dordrecht, 2006 | MR | Zbl

[9] Schmidt R., Subgroup lattices of groups, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl

[10] Zacher G., “I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali”, Atti della Accademia Nazionale dei Lincei Rend. cl. Sci. Fis. Mat. Natur., 8:37 (1964), 150–154 | MR

[11] Skiba A. N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436:8 (2015), 1–16 | DOI | MR | Zbl

[12] Zimmermann I., “Submodular subgroups of finite groups”, Math. Z., 202:2 (1989), 545–557 | DOI | MR | Zbl

[13] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[14] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[15] Huppert B., Endliche Gruppen I, Springer–Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl