Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2023_31_2_a1, author = {A. N. Avlas and A. K. Demenchuk and S. V. Lemeshevskii and E. K. Makarov}, title = {Predicting the spread of coronavirus infection using equations with aftereffects}, journal = {Trudy Instituta matematiki}, pages = {5--14}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/} }
TY - JOUR AU - A. N. Avlas AU - A. K. Demenchuk AU - S. V. Lemeshevskii AU - E. K. Makarov TI - Predicting the spread of coronavirus infection using equations with aftereffects JO - Trudy Instituta matematiki PY - 2023 SP - 5 EP - 14 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/ LA - ru ID - TIMB_2023_31_2_a1 ER -
%0 Journal Article %A A. N. Avlas %A A. K. Demenchuk %A S. V. Lemeshevskii %A E. K. Makarov %T Predicting the spread of coronavirus infection using equations with aftereffects %J Trudy Instituta matematiki %D 2023 %P 5-14 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/ %G ru %F TIMB_2023_31_2_a1
A. N. Avlas; A. K. Demenchuk; S. V. Lemeshevskii; E. K. Makarov. Predicting the spread of coronavirus infection using equations with aftereffects. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 5-14. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/
[1] Harendra Pal Singh, Sumit Kaur Bhatia, Yashika Bahri, Riya Jain, “Optimal control strategies to combat COVID-19 transmission: A mathematical model with incubation time delay”, Results in Control and Optimization, 9 (2022), 100176 | DOI
[2] Grinchuk P. S., Fisenko S. P., “Fizicheskaya kinetika i modelirovanie rasprostraneniya epidemii”, Inzhenerno-fizicheskii zhurnal, 94:1 (2021), 3–8 | MR
[3] Shnip A. I., “Kineticheskaya model dinamiki epidemii i ee testirovanie na dannykh rasprostraneniya epidemii COVID-19”, Inzhenerno-fiz. zhurn., 94:1 (2021), 9–21
[4] Avlas A. N., Demenchuk A. K., Lemeshevskii S. V., Makarov E. K., “Approksimatsiya izolirovannoi volny epidemicheskogo protsessa s pomoschyu kombinatsii eksponent”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 57:4 (2021), 391–400 | DOI
[5] Kermack W. O., McKendrick A. G., “A Contribution to the Mathematical Theory of Epidemics”, Proc. Roy. Soc. Lond. Ser. A, 115:772 (1927), 700–721 | DOI
[6] Desyatkov B. M., Borodulin A. I., Kotlyarova S. S. i dr., “Matematicheskoe modelirovanie epidemicheskikh protsessov i otsenka ikh statisticheskikh kharakteristik”, Khimicheskaya i biol. bezopasnost, 2009, no. 1–3 (43–45), 15–20
[7] Grishunina Yu. B., Kontarov N. A., Arkharova G. V., Yuminova N. V., “Modelirovanie epidemicheskoi situatsii s uchetom vneshnikh riskov”, Epidemiologiya i vaktsinoprofilaktika, 2014, no. 5 (78), 61–66
[8] Rvachev L. A., “Eksperiment po modelirovaniyu na UTsVM epidemii bolshogo masshtaba”, Dokl. AN SSSR, 180:2 (1968), 294–296
[9] Rvachev L. A., “Eksperiment po mashinnomu prognozirovaniyu epidemii grippa”, Dokl. AN SSSR, 198:1 (1971), 68–70
[10] Rvachev L. A., “Modelirovanie mediko-biologicheskikh protsessov v obschestve kak razdel dinamiki sploshnykh sred”, Dokl. AN SSSR, 203:3 (1972), 540–542 | Zbl
[11] Baroyan O. V., Rvachev L. A., Matematika i epidemiologiya, Znanie, M., 1977