Predicting the spread of coronavirus infection using equations with aftereffects
Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of forecasting the first wave of the spread of COVID-19 coronavirus infection based on the simplified Baroyan–Rvachev model are presented.
@article{TIMB_2023_31_2_a1,
     author = {A. N. Avlas and A. K. Demenchuk and S. V. Lemeshevskii and E. K. Makarov},
     title = {Predicting the spread of coronavirus infection using equations with aftereffects},
     journal = {Trudy Instituta matematiki},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/}
}
TY  - JOUR
AU  - A. N. Avlas
AU  - A. K. Demenchuk
AU  - S. V. Lemeshevskii
AU  - E. K. Makarov
TI  - Predicting the spread of coronavirus infection using equations with aftereffects
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 5
EP  - 14
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/
LA  - ru
ID  - TIMB_2023_31_2_a1
ER  - 
%0 Journal Article
%A A. N. Avlas
%A A. K. Demenchuk
%A S. V. Lemeshevskii
%A E. K. Makarov
%T Predicting the spread of coronavirus infection using equations with aftereffects
%J Trudy Instituta matematiki
%D 2023
%P 5-14
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/
%G ru
%F TIMB_2023_31_2_a1
A. N. Avlas; A. K. Demenchuk; S. V. Lemeshevskii; E. K. Makarov. Predicting the spread of coronavirus infection using equations with aftereffects. Trudy Instituta matematiki, Tome 31 (2023) no. 2, pp. 5-14. http://geodesic.mathdoc.fr/item/TIMB_2023_31_2_a1/

[1] Harendra Pal Singh, Sumit Kaur Bhatia, Yashika Bahri, Riya Jain, “Optimal control strategies to combat COVID-19 transmission: A mathematical model with incubation time delay”, Results in Control and Optimization, 9 (2022), 100176 | DOI

[2] Grinchuk P. S., Fisenko S. P., “Fizicheskaya kinetika i modelirovanie rasprostraneniya epidemii”, Inzhenerno-fizicheskii zhurnal, 94:1 (2021), 3–8 | MR

[3] Shnip A. I., “Kineticheskaya model dinamiki epidemii i ee testirovanie na dannykh rasprostraneniya epidemii COVID-19”, Inzhenerno-fiz. zhurn., 94:1 (2021), 9–21

[4] Avlas A. N., Demenchuk A. K., Lemeshevskii S. V., Makarov E. K., “Approksimatsiya izolirovannoi volny epidemicheskogo protsessa s pomoschyu kombinatsii eksponent”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 57:4 (2021), 391–400 | DOI

[5] Kermack W. O., McKendrick A. G., “A Contribution to the Mathematical Theory of Epidemics”, Proc. Roy. Soc. Lond. Ser. A, 115:772 (1927), 700–721 | DOI

[6] Desyatkov B. M., Borodulin A. I., Kotlyarova S. S. i dr., “Matematicheskoe modelirovanie epidemicheskikh protsessov i otsenka ikh statisticheskikh kharakteristik”, Khimicheskaya i biol. bezopasnost, 2009, no. 1–3 (43–45), 15–20

[7] Grishunina Yu. B., Kontarov N. A., Arkharova G. V., Yuminova N. V., “Modelirovanie epidemicheskoi situatsii s uchetom vneshnikh riskov”, Epidemiologiya i vaktsinoprofilaktika, 2014, no. 5 (78), 61–66

[8] Rvachev L. A., “Eksperiment po modelirovaniyu na UTsVM epidemii bolshogo masshtaba”, Dokl. AN SSSR, 180:2 (1968), 294–296

[9] Rvachev L. A., “Eksperiment po mashinnomu prognozirovaniyu epidemii grippa”, Dokl. AN SSSR, 198:1 (1971), 68–70

[10] Rvachev L. A., “Modelirovanie mediko-biologicheskikh protsessov v obschestve kak razdel dinamiki sploshnykh sred”, Dokl. AN SSSR, 203:3 (1972), 540–542 | Zbl

[11] Baroyan O. V., Rvachev L. A., Matematika i epidemiologiya, Znanie, M., 1977