Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2023_31_1_a8, author = {V. I. Korzyuk and O. A. Kovnatskaya}, title = {Picard problem on the plane for a quasilinear hyperbolic equation of the second order}, journal = {Trudy Instituta matematiki}, pages = {70--80}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/} }
TY - JOUR AU - V. I. Korzyuk AU - O. A. Kovnatskaya TI - Picard problem on the plane for a quasilinear hyperbolic equation of the second order JO - Trudy Instituta matematiki PY - 2023 SP - 70 EP - 80 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/ LA - ru ID - TIMB_2023_31_1_a8 ER -
V. I. Korzyuk; O. A. Kovnatskaya. Picard problem on the plane for a quasilinear hyperbolic equation of the second order. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 70-80. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/
[1] V. I. Korzyuk, Uravneniya matematicheskoi fiziki, Lenand, M., 2021
[2] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970
[3] V. I. Korzyuk, O. A. Kovnatskaya, “Resheniya zadach dlya volnovogo uravneniya s usloviyami na kharakteristikakh”, Ves. Nats. akad. navuk Belarusi. Ser. fiz. mat. navuk, 57:2 (2021), 148–155 | MR
[4] V. I. Korzyuk, O. A. Kovnatskaya, V. P. Serikov, “Zadachi dlya odnomernogo volnovogo uravneniya s usloviyami na kharakteristikakh i nekharakteristicheskikh liniyakh”, Tr. In-ta matematiki, 29:1-2 (2021), 94–100
[5] V. I. Korzyuk, O. A. Kovnatskaya, V. A. Sevastyuk, “Zadacha Gursa na ploskosti dlya kvazilineinogo giperbolicheskogo uravneniya”, Dokl. Nats. akad. nauk Belarusi, 66:4 (2022), 391–396 | MR
[6] V. I. Korzyuk, I. I. Stolyarchuk, “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differents. uravneniya, 53:1 (2017), 77–88 | DOI | MR | Zbl
[7] A. N. Mironov, “K metodu Rimana resheniya odnoi smeshannoi zadachi”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz. mat. nauki, 2007, no. 2, 27–32 | DOI | Zbl
[8] O. Yu. Naumov, “Zadacha dlya uravneniya kolebaniya struny s proizvodnymi po normali na nekharakteristicheskikh chastyakh granitsy treugolnika i spetsialnym usloviem sopryazheniya na kharakteristike”, Nauchnye doklady ezhegodnoi mezhvuzovskoi 55 Nauchnoi konferentsii SamGPU, Samara, 2001, 58–61
[9] M. Koeber, “Inclusion of solutions of initial value problems for quasilinear hyperbolic equations”, Math. Res., 89 (1995), 132–137 | MR
[10] V. I. Korzyuk, I. S. Kozlovskaya, Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, kurs lektsii, v 10 ch., v. 1–4, BGU, Minsk, 2017-2023
[11] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., v. 1–3, Lan, Sankt-Peterburg, 2023