Picard problem on the plane for a quasilinear hyperbolic equation of the second order
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical solutions of problems for a quasilinear hyperbolic equation of the second order in the case of two independent variables with given conditions for the desired function in combination both on characteristic lines and on non-characteristic lines are obtained in the paper. The problems are reduced to a system of equations with a completely continuous operator. Solutions are constructed using the method of successive approximations. In addition, for each problem considered, the uniqueness of the resulting classical solution is shown. Necessary and sufficient matching conditions of given functions are proved in the case of each of the problems considered in the paper, under which classical solutions exist in the presence of a certain smoothness of the given functions.
@article{TIMB_2023_31_1_a8,
     author = {V. I. Korzyuk and O. A. Kovnatskaya},
     title = {Picard problem on the plane for a quasilinear hyperbolic equation of the second order},
     journal = {Trudy Instituta matematiki},
     pages = {70--80},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - O. A. Kovnatskaya
TI  - Picard problem on the plane for a quasilinear hyperbolic equation of the second order
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 70
EP  - 80
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/
LA  - ru
ID  - TIMB_2023_31_1_a8
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A O. A. Kovnatskaya
%T Picard problem on the plane for a quasilinear hyperbolic equation of the second order
%J Trudy Instituta matematiki
%D 2023
%P 70-80
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/
%G ru
%F TIMB_2023_31_1_a8
V. I. Korzyuk; O. A. Kovnatskaya. Picard problem on the plane for a quasilinear hyperbolic equation of the second order. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 70-80. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a8/

[1] V. I. Korzyuk, Uravneniya matematicheskoi fiziki, Lenand, M., 2021

[2] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970

[3] V. I. Korzyuk, O. A. Kovnatskaya, “Resheniya zadach dlya volnovogo uravneniya s usloviyami na kharakteristikakh”, Ves. Nats. akad. navuk Belarusi. Ser. fiz. mat. navuk, 57:2 (2021), 148–155 | MR

[4] V. I. Korzyuk, O. A. Kovnatskaya, V. P. Serikov, “Zadachi dlya odnomernogo volnovogo uravneniya s usloviyami na kharakteristikakh i nekharakteristicheskikh liniyakh”, Tr. In-ta matematiki, 29:1-2 (2021), 94–100

[5] V. I. Korzyuk, O. A. Kovnatskaya, V. A. Sevastyuk, “Zadacha Gursa na ploskosti dlya kvazilineinogo giperbolicheskogo uravneniya”, Dokl. Nats. akad. nauk Belarusi, 66:4 (2022), 391–396 | MR

[6] V. I. Korzyuk, I. I. Stolyarchuk, “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differents. uravneniya, 53:1 (2017), 77–88 | DOI | MR | Zbl

[7] A. N. Mironov, “K metodu Rimana resheniya odnoi smeshannoi zadachi”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz. mat. nauki, 2007, no. 2, 27–32 | DOI | Zbl

[8] O. Yu. Naumov, “Zadacha dlya uravneniya kolebaniya struny s proizvodnymi po normali na nekharakteristicheskikh chastyakh granitsy treugolnika i spetsialnym usloviem sopryazheniya na kharakteristike”, Nauchnye doklady ezhegodnoi mezhvuzovskoi 55 Nauchnoi konferentsii SamGPU, Samara, 2001, 58–61

[9] M. Koeber, “Inclusion of solutions of initial value problems for quasilinear hyperbolic equations”, Math. Res., 89 (1995), 132–137 | MR

[10] V. I. Korzyuk, I. S. Kozlovskaya, Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, kurs lektsii, v 10 ch., v. 1–4, BGU, Minsk, 2017-2023

[11] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., v. 1–3, Lan, Sankt-Peterburg, 2023