Finite groups with weakly subnormal Schmidt subgroups
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 50-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-nilpotent finite group whose all proper subgroups are nilpotent is called a Schmidt group. A subgroup $H$ of a group $G$ is called weakly subnormal in $G$ if $H$ is generated by two subgroups, one of which is subnormal in $G$ and the other is seminormal in $G$. We establish $3$-solvability of a finite group with weakly subnormal $\{2,3\}$-Schmidt subgroups. This implies solvability of a finite group with weakly subnormal $\{2,3\}$-Schmidt subgroups and $5$-closed $\{2,5\}$-Schmidt subgroups. We prove nilpotency of the derived subgroup of a finite group in which all Schmidt subgroups are weakly subnormal.
@article{TIMB_2023_31_1_a6,
     author = {V. N. Kniahina and V. S. Monakhov},
     title = {Finite groups with weakly subnormal {Schmidt} subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {50--57},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/}
}
TY  - JOUR
AU  - V. N. Kniahina
AU  - V. S. Monakhov
TI  - Finite groups with weakly subnormal Schmidt subgroups
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 50
EP  - 57
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/
LA  - ru
ID  - TIMB_2023_31_1_a6
ER  - 
%0 Journal Article
%A V. N. Kniahina
%A V. S. Monakhov
%T Finite groups with weakly subnormal Schmidt subgroups
%J Trudy Instituta matematiki
%D 2023
%P 50-57
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/
%G ru
%F TIMB_2023_31_1_a6
V. N. Kniahina; V. S. Monakhov. Finite groups with weakly subnormal Schmidt subgroups. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 50-57. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/

[1] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR

[3] V. S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Tr. Ukr. matem. kongressa 2001, Sektsiya 1, In-t matematiki NAN Ukrainy, Kiev, 2002, 81–90 | Zbl

[4] V. N. Knyagina, V. S. Monakhov, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sib. matem. zhurn., 45:6 (2004), 1316–1322 | MR | Zbl

[5] V. A. Vedernikov, “Konechnye gruppy s subnormalnymi podgruppami Shmidta”, Algebra i logika, 44:6 (2007), 669–687

[6] Kh. A. Al-Sharo, A. N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 2017, 4158–4165 | DOI | MR | Zbl

[7] X. Yi, S. F. Kamornikov, “Finite groups with $\sigma$-subnormal Schmidt subgroups”, J. Algebra, 560 (2020), 181–191 | DOI | MR | Zbl

[8] W. Guo, I. N. Safonova, A. N. Skiba, “On $\sigma$-subnormal subgroups of finite groups”, Southeast Asian Bull. Math., 45 (2021), 813–824 | MR | Zbl

[9] B. Hu, J. Huang, D. Song, I. N. Safonova, “Finite groups with $K$-$\mathfrak{F}$-subnormal Schmidt subgroups”, Comm. Algebra, 49:10 (2021), 4513–4518 | DOI | MR | Zbl

[10] Su Xiongying, “On semi-normal subgroups of finite group”, J. Math. (Wuhan), 8:1 (1988), 7–9 | MR

[11] P. Wang, “Some sufficient conditions of a nilpotent Group”, J. Algebra, 148 (1992), 289–295 | DOI | MR | Zbl

[12] A. Carocca, H. Matos, “Some solvability criteria for finite groups”, Hokkaido Math. J., 26 (1997), 157–161 | DOI | MR | Zbl

[13] V. V. Podgornaya, “Polunormalnye podgruppy i sverkhrazreshimost konechnykh grupp”, Ves. Nats. akad. navuk Belarusi. Ser. fiz. mat. navuk, 2000, no. 4, 22–25 | MR

[14] V. S. Monakhov, “Konechnye gruppy s polunormalnoi khollovoi podgruppoi”, Matem. zametki, 80:4 (2006), 573–581 | DOI | Zbl

[15] Guo Wen Bin, “Finite Groups with Seminormal Sylow Subgroups”, Acta Math. Sinica. English Series, 24:10 (2008), 1751–1758 | DOI | MR

[16] V. N. Knyagina, V. S. Monakhov, “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | MR | Zbl

[17] V. N. Knyagina, V. S. Monakhov, “Finite groups with semi-subnormal Schmidt subgroups”, Algebra Discrete Math, 29:1 (2020), 66–73 | DOI | MR | Zbl

[18] V. N. Knyagina, “Nilpotentnost kommutanta konechnoi gruppy s polusubnormalnymi podgruppami Shmidta”, PFMT, 2022, no. 3 (52), 86–89

[19] Ts. Khuan, B. Khu, A. N. Skiba, “Konechnye gruppy so slabo subnormalnymi i chastichno subnormalnymi podgruppami”, Sib. matem. zhurn., 62:1 (2021), 210–220

[20] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[21] A. A. Trofimuk, “O konechnykh gruppakh, faktorizuemykh slabo subnormalnymi podgruppami”, Sib. matem. zhurn., 62:6 (2021), 1401–1408

[22] A system for computational discrete algebra GAP 4. 11.1 (Date of access: 14.04.2022) http://www.gap-system.org

[23] V. S. Monakhov, “Proizvedenie biprimarnoi i 2-razlozhimoi grupp”, Matem. zametki, 23:5 (1978), 641–649 | MR | Zbl

[24] D. Gorenstein, Finite simple groups: An introduction to their classification, Plenum Publ. Corp, New York, 1982 | MR | Zbl

[25] B. Huppert, N. Blackburn, Finite Groups, v. II, Springer-Verlag, Berlin-Heidelberg-New York, 1982 | MR

[26] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon, London, 1985 | MR | Zbl

[27] V. S. Monakhov, “O gruppakh s formatsionno subnormalnymi 2-maksimalnymi podgruppami”, Matem. zametki, 105:2 (2019), 269–277 | DOI | Zbl