Finite groups with weakly subnormal Schmidt subgroups
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 50-57

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-nilpotent finite group whose all proper subgroups are nilpotent is called a Schmidt group. A subgroup $H$ of a group $G$ is called weakly subnormal in $G$ if $H$ is generated by two subgroups, one of which is subnormal in $G$ and the other is seminormal in $G$. We establish $3$-solvability of a finite group with weakly subnormal $\{2,3\}$-Schmidt subgroups. This implies solvability of a finite group with weakly subnormal $\{2,3\}$-Schmidt subgroups and $5$-closed $\{2,5\}$-Schmidt subgroups. We prove nilpotency of the derived subgroup of a finite group in which all Schmidt subgroups are weakly subnormal.
@article{TIMB_2023_31_1_a6,
     author = {V. N. Kniahina and V. S. Monakhov},
     title = {Finite groups with weakly subnormal {Schmidt} subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {50--57},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/}
}
TY  - JOUR
AU  - V. N. Kniahina
AU  - V. S. Monakhov
TI  - Finite groups with weakly subnormal Schmidt subgroups
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 50
EP  - 57
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/
LA  - ru
ID  - TIMB_2023_31_1_a6
ER  - 
%0 Journal Article
%A V. N. Kniahina
%A V. S. Monakhov
%T Finite groups with weakly subnormal Schmidt subgroups
%J Trudy Instituta matematiki
%D 2023
%P 50-57
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/
%G ru
%F TIMB_2023_31_1_a6
V. N. Kniahina; V. S. Monakhov. Finite groups with weakly subnormal Schmidt subgroups. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 50-57. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a6/