On the functor properties of the $\Omega$-saturation of a topological $T_1$-space
Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 6-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a topological $T_1$-space we consider a $\Omega$-saturation, which is canonically embedded in the Wallman extension $\omega X$. In a certain sense, this saturation is maximal with respect to inclusion among all saturations of this type. A class of maps $X\stackrel{f}{\longrightarrow}Y$ which admit a continuous extension $s_\Delta X\stackrel{\tilde f}{\longrightarrow}s_\Delta Y$, where $s_\Delta X$ and $s_\Delta Y$ are the $\Omega$-saturations (mentioned above) of the spaces $X$ and $Y$ respectively is found. It is shown that these maps, together with the class of topological $T_1$-spaces, form a category, and the construction of the $\Omega$-saturation considered in the paper defines a covariant functor from the indicated category into the category TOP of topological spaces and continuous maps.
@article{TIMB_2023_31_1_a1,
     author = {A. S. Biadrytski},
     title = {On the functor properties of the $\Omega$-saturation of a topological $T_1$-space},
     journal = {Trudy Instituta matematiki},
     pages = {6--13},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a1/}
}
TY  - JOUR
AU  - A. S. Biadrytski
TI  - On the functor properties of the $\Omega$-saturation of a topological $T_1$-space
JO  - Trudy Instituta matematiki
PY  - 2023
SP  - 6
EP  - 13
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a1/
LA  - ru
ID  - TIMB_2023_31_1_a1
ER  - 
%0 Journal Article
%A A. S. Biadrytski
%T On the functor properties of the $\Omega$-saturation of a topological $T_1$-space
%J Trudy Instituta matematiki
%D 2023
%P 6-13
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a1/
%G ru
%F TIMB_2023_31_1_a1
A. S. Biadrytski. On the functor properties of the $\Omega$-saturation of a topological $T_1$-space. Trudy Instituta matematiki, Tome 31 (2023) no. 1, pp. 6-13. http://geodesic.mathdoc.fr/item/TIMB_2023_31_1_a1/

[1] V. I. Ponomarev, “O zamknutykh otobrazheniyakh”, Uspekhi matematicheskikh nauk, 14:4(88) (1959), 203–206 | MR | Zbl

[2] I. Loncar, “Hyperspaces of the inverse limit space”, Glasnik Matematicki, 27(47) (1992), 71–84 | MR | Zbl

[3] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006

[4] D. Harris, “The Wallman compactification as a functor”, General Topology and its Applications, 1:3 (1971), 273–281 | DOI | MR | Zbl

[5] G. O. Kukrak, V. L. Timokhovich, “Rasshirenie Volmena i eksponenta. Funktorialnye svoistva”, Tr. In-ta matematiki, 30:1-2 (2022), 37–43 | Zbl

[6] A. S. Bedritskii, V. L. Timokhovich, “Funktorialnye svoistva $\Omega$-nasyscheniya topologicheskogo prostranstva”, Zhurnal BGU. Matematika. Informatika, 2023, no. 1, 31–37

[7] I. Yu. Goldovt, V. L. Timokhovich, “Nasyschenie topologicheskikh prostranstv i problema Morita”, Dokl. AN BSSR, 21:9 (1977), 777–780 | MR | Zbl

[8] G. O. Kukrak, V. L. Timokhovich, “O schetnokompaktifitsiruemosti v smysle Morita”, Zhurnal BGU. Matematika. Informatika, 2021, no. 1, 46–53 | MR

[9] R. Engelking, Obschaya topologiya, Mir, M., 1986