Rational interpolation of the function ${\left| x \right|}^{\alpha}$by the system of Chebyshev--Markov of the second kind
Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses the approximation of the function $ {\left| x \right|}^{\alpha}, \ \alpha> 0 $, by rational Lagrange interpolation functions on the segment $ [-1, 1] $. The zeros of the rational Chebyshev – Markov function of the second kind are chosen as interpolation nodes. An integral representation of the interpolation remainder and an upper bound for the considered uniform approximations are obtained. On their basis, various cases of the arrangement of the poles of the approximating rational function are studied in detail: polynomial, a fixed number of geometrically different poles, and general rational.
@article{TIMB_2022_30_1_a6,
     author = {V. J. Medvedeva and Y. A. Rovba},
     title = {Rational interpolation of the function ${\left| x \right|}^{\alpha}$by the system of {Chebyshev--Markov} of the second kind},
     journal = {Trudy Instituta matematiki},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a6/}
}
TY  - JOUR
AU  - V. J. Medvedeva
AU  - Y. A. Rovba
TI  - Rational interpolation of the function ${\left| x \right|}^{\alpha}$by the system of Chebyshev--Markov of the second kind
JO  - Trudy Instituta matematiki
PY  - 2022
SP  - 50
EP  - 62
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a6/
LA  - ru
ID  - TIMB_2022_30_1_a6
ER  - 
%0 Journal Article
%A V. J. Medvedeva
%A Y. A. Rovba
%T Rational interpolation of the function ${\left| x \right|}^{\alpha}$by the system of Chebyshev--Markov of the second kind
%J Trudy Instituta matematiki
%D 2022
%P 50-62
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a6/
%G ru
%F TIMB_2022_30_1_a6
V. J. Medvedeva; Y. A. Rovba. Rational interpolation of the function ${\left| x \right|}^{\alpha}$by the system of Chebyshev--Markov of the second kind. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 50-62. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a6/

[1] Bernshtein S. N., “O nailuchshem priblizhenii $ |x| $ posredstvom mnogochlenov dannoi stepeni”, Sobr. soch., v 2 t., v. 1, Izd-vo Akad. nauk SSSR, M., 1952, 157–206

[2] Varga, R. S., Carpenter A. J., “On the Bernstein Conjecture in Approximation Theory”, Constructive Approximation, 1:1 (1985), 333–348 | DOI | MR | Zbl

[3] Nikolskii S. M., “O nailuchshem priblizhenii mnogochlenami v srednem funktsii $ |a-x|^s $”, Izv. AN SSSR. Ser. mat., 11:2 (1947), 139–180 | Zbl

[4] Raitsin, R. A., Bernstein S. N., “Limit theorem for the best approximation in the mean and some of its applications”, Izv. Vysch. Uchebn. Zaved. Mat., 12 (1968), 81–86 | MR

[5] Raitsin R. A., “O nailuchshem srednekvadraticheskom priblizhenii mnogochlenami i tselymi funktsiyami konechnoi stepeni funktsii, imeyuschikh algebraicheskuyu osobuyu tochku”, Izv. vuzov. Matematika, 1969, no. 4, 59–61 | MR

[6] Ganzburg M. I., “The Bernstein Constant and Polynomial Interpolation at the Chebyshev Nodes”, J. Approx. Theory, 119:2 (2002), 193–213 | DOI | MR | Zbl

[7] Revers M., “On the asymptotics of polynomial interpolation to $ |x|^{ \alpha } $ at the Chebyshev nodes”, J. Approx. Theory, 165 (2013), 70–82 | DOI | MR | Zbl

[8] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979, 176 pp.

[9] Rovba E. A., Medvedeva V. Yu., “O ratsionalnoi interpolyatsii funktsii $\left | x \right |^{\alpha }$ po rasshirennoi sisteme uzlov Chebysheva – Markova”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 55:4 (2019), 391–405 | MR