@article{TIMB_2022_30_1_a5,
author = {V. V. Lepin},
title = {Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph},
journal = {Trudy Instituta matematiki},
pages = {44--49},
year = {2022},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/}
}
TY - JOUR
AU - V. V. Lepin
TI - Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph
JO - Trudy Instituta matematiki
PY - 2022
SP - 44
EP - 49
VL - 30
IS - 1
UR - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/
LA - ru
ID - TIMB_2022_30_1_a5
ER -
%0 Journal Article
%A V. V. Lepin
%T Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph
%J Trudy Instituta matematiki
%D 2022
%P 44-49
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/
%G ru
%F TIMB_2022_30_1_a5
V. V. Lepin. Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 44-49. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/
[1] Yuster R., “Combinatorial and computational aspects of graph packing and graph decomposition”, Computer Science Review, 1:1 (2007), 12–26 | DOI | Zbl
[2] Joos F., Rautenbach D., “Equality of Distance Packing Numbers”, Discrete Mathematics, 338:12 (2015), 2374–2377 | DOI | MR | Zbl
[3] Brandstadt A., Mosca R., “On distance-3 matchings and induced matchings”, Discrete Applied Mathematics, 159:7 (2011), 509–520 | DOI | MR | Zbl
[4] Gavril F., “The intersection graphs of subtrees in trees are exactly the chordal graphs”, Journal of Combinatorial Theory, Series B, 16:1 (1974), 47–56 | DOI | MR | Zbl
[5] Leimer H. G., “Optimal decomposition by clique separators”, Discrete Mathematics, 113:1-3 (1993), 99–123 | DOI | MR | Zbl
[6] Tarjan R. E., “Decomposition by clique separators”, Discrete Math., 55 (1985), 221–232 | DOI | MR | Zbl
[7] Dirac G.A., “Onrigid circuit graphs”, Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71–76 | DOI | MR | Zbl