Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2022_30_1_a5, author = {V. V. Lepin}, title = {Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph}, journal = {Trudy Instituta matematiki}, pages = {44--49}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/} }
TY - JOUR AU - V. V. Lepin TI - Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph JO - Trudy Instituta matematiki PY - 2022 SP - 44 EP - 49 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/ LA - ru ID - TIMB_2022_30_1_a5 ER -
%0 Journal Article %A V. V. Lepin %T Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph %J Trudy Instituta matematiki %D 2022 %P 44-49 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/ %G ru %F TIMB_2022_30_1_a5
V. V. Lepin. Application of the clique minimal separator decomposition to finding the maximum weight $\{K_1,K_2,k,l\}$-packing in a graph. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 44-49. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a5/