Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2022_30_1_a10, author = {T. S. Busel and I. D. Suprunenko}, title = {On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic}, journal = {Trudy Instituta matematiki}, pages = {117--129}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/} }
TY - JOUR AU - T. S. Busel AU - I. D. Suprunenko TI - On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic JO - Trudy Instituta matematiki PY - 2022 SP - 117 EP - 129 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/ LA - en ID - TIMB_2022_30_1_a10 ER -
%0 Journal Article %A T. S. Busel %A I. D. Suprunenko %T On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic %J Trudy Instituta matematiki %D 2022 %P 117-129 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/ %G en %F TIMB_2022_30_1_a10
T. S. Busel; I. D. Suprunenko. On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/
[1] Busel T. S., Suprunenko I. D., “On the behaviour of regular unipotent elements from subsystem subgroups of type $A_3$ in irreducible representations of groups of type $A_n$ with special highest weights”, Groups, geometries, graphs and GAP, World Scientific, Singapore
[2] Busel T. S., Suprunenko I. D., “The block structure of the images of regular unipotent elements from subsystem subgroups of type $C_2$ in irreducible representations of groups of type $C_n$ with opredelennymi highest weights”, Zapiski nauchnyh seminarov POMI (in Russian)
[3] Osinovskaya A. A., Suprunenko I. D., “Unipotent elements from subsystem subgroups of type $A_3$ in representations of the special linear group (in Russian)”, Doklady NAN Belarusi, 56:4 (2012), 11–15 | MR | Zbl
[4] Busel T. S., Suprunenko I. D., “The block structure of the images of regular unipotent elements from subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups. I-III”, Siberian Advances in Mathematics, 30:1 (2020), 1–20 ; Siberian Advances in Mathematics, 30:4 (2020), 229–274 ; Siberian Advances in Mathematics, 31:2 (2021), 79–97 | DOI | MR | DOI | MR | DOI | MR
[5] Testerman D., Zalesski A. E., “Irreducibility in algebraic groups and regular unipotent elements”, Proc. Amer. Math. Soc., 141:1 (2013), 13–28 | DOI | MR | Zbl
[6] Saxl J., Seitz G.M., “Subgroups of algebraic groups containing regular unipotent elements”, J. London Math. Soc, 55:2 (1997), 370–386 | DOI | MR | Zbl
[7] Suprunenko I., “Unipotent elements of nonprime order in representations of the classical algebraic groups: two big Jordan blocks”, Zapiski nauchnyh seminarov POMI, 414 (2013), 193–241 | MR
[8] Testerman D., Zalesski A. E., “Irreducible representations of simple algebraic groups in which a unipotent element is represented by a matrix with a single non-trivial Jordan block”, J. Group Theory, 21 (2018), 1–20 | DOI | MR | Zbl
[9] Guralnick R., Malle G., “Rational rigidity for $E_8(p)$”, Compos. Math., 150:10 (2014), 1679–1702 | DOI | MR | Zbl
[10] Barry M. J. J., “Decomposing tensor products and exterior and symmetric squares”, J. Group Theory, 14 (2011), 59–82 | DOI | MR | Zbl
[11] Korhonen M., “Jordan blocks of unipotent elements in some irreducible representations of classical groups in good characteristic”, Proc. Amer. Math. Soc., 147 (2019), 4205–4219 | DOI | MR | Zbl
[12] Lawther R., “Jordan block sizes of unipotent elements in exceptional algebraic groups”, Commun. in Algebra, 25 (1995), 4125–4156 | DOI | MR
[13] Busel T.S., Suprunenko I.D., “The Jordan block structure of the images of unipotent elements in irreducible modular representations of classical algebraic groups of small dimensions”, Sib. elektron. matem. izv. (to appear)
[14] Tiep P. H., Zalesskii A. E., “Mod $p$ reducibility of unramified representations of finite groups of Lie type”, Proc. London Math. Soc., 84:2 (2002), 439–472 | DOI | MR | Zbl
[15] Osinovskaya A. A., “Restrictions of representations of algebraic groups of types $E_n$ and $F_4$ to naturally embedded $A_1$-subgroups and the behavior of root elements”, Comm. in Algebra, 33 (2005), 213–220 | DOI | MR | Zbl
[16] Osinovskaya A. A., Suprunenko I. D., “On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups”, J. Algebra, 273 (2004), 586–600 | DOI | MR | Zbl
[17] Velichko M. V., “On the behaviour of the root elements in irreducible representations of simple algebraic groups”, Trudy Instituta matematiki, 13:2 (2005), 116–121 | MR
[18] Velichko M. V., “On the behaviour of root elements in modular representations of symplectic groups”, Trudy Instituta matematiki, 14:2 (2006), 28–34 (in Russian) | MR | Zbl
[19] Velichko M. V., “The Jordan block structure of images of long root elements in modular representations of algebraic groups of types $B_n$ and $F_4$”, Trudy Instituta matematiki, 19:2 (2011), 7–11 (in Russian) | Zbl
[20] Velichko M. V., Suprunenko I. D., “On the behaviour of small quadratic elements in representations of the special linear group with large highest weights”, J. Math. Sci. (N. Y.), 147:5 (2007), 7021–7041 | DOI | MR
[21] Suprunenko I. D., “Minimal polynomials of elements of order $p$ in irreducible representations of Chevalley groups over fields of characteristic $p$”, Siberian Advances in Mathematics, 6:4 (1996), 97–150 | MR | Zbl
[22] Suprunenko I. D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs Amer. Math. Soc., 200, no. 939, 2009, 154 pp. | DOI | MR
[23] Suprunenko I. D., “Minimal polynomials of unipotent elements in irreducible representations of the special linear group over a field of characteristic two”, Doklady NAN Belarusi, 47:5 (2003), 5–13 (in Russian) | MR | Zbl
[24] Suprunenko I. D., “Minimal polynomials of unipotent elements in irreducible representations of the symplectic group over a field of characteristic two”, Doklady NAN Belarusi, 48:1 (2004), 28–31 (in Russian) | MR | Zbl
[25] Busel T. S., Suprunenko I. D., Testerman D., “The minimal polynomials of unipotent elements of non-prime order in irreducible representations of the exceptional algebraic groups in some good characteristics”, Doklady NAN Belarusi, 63:5 (2019), 519–525 | DOI | MR
[26] Suprunenko I. D., “The minimal polynomials of the images of unipotent elements of nonprime order in irreducible representations of an algebraic group of type $F_4$ in an odd characteristic”, Doklady NAN Belarusi, 66:3 (2022), 269–273 | DOI | MR
[27] Osinovskaya A. A., “Regular unipotent elements from subsystem subgroups of type $A_2$ in representations of the special linear groups”, J. Math. Sci. (N.Y.), 219:3 (2016), 473–483 | DOI | MR | Zbl
[28] Bourbaki N., Groupes et algebres de Lie, Chaps. VII-VIII, Hermann, Paris, 1975 | MR
[29] Steinberg R., Lectures on Chevalley groups, Yale Univ. Math. Dept., New Haven, Conn., 1968 | MR | Zbl
[30] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl
[31] Seitz G. M., “Unipotent elements, tilting modules, and saturation ”, Invent. Math., 141:3 (2000), 467–502 | DOI | MR | Zbl
[32] Zhilinskii A. G., Coherent systems of representations of inductive families of simple complex Lie algebras, Preprint, No 38 (438), National Academy of Sciences of Belarus. Institute of Mathematics, Minsk, 1990 (in Russian) | MR
[33] Zhelobenko D. P., “The classical groups. Spectral analysis of their finite-dimensional representations”, Russian Mathematical Surveys, 17:1 (1962), 1–94 | DOI | MR | Zbl
[34] Seitz G. M., The maximal subgroups of classical algebraic groups, Memoirs Amer. Math. Soc., 67, no. 365, 1987, iv–286 pp. | DOI | MR