On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic
Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 117-129
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we considered some results on determining the Jordan block sizes (disregarding their multiplicities) for the images of unipotent elements from subsystem subgroups of small ranks in modular irreducible representations of the classical algebraic groups. The principal attention is given to regular unipotent elements from subsystem subgroups of type $A_3$ and $A_5$ or $C_2$ and $C_3$ in representations of groups of types $A_n$ or $C_n$, respectively. For $p$-restricted irreducible representations, it is proved that the images of such elements have Jordan blocks of all a priori possible sizes if some sequences of consecutive coefficients of the highest weight satisfy certain special conditions.
@article{TIMB_2022_30_1_a10,
author = {T. S. Busel and I. D. Suprunenko},
title = {On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic},
journal = {Trudy Instituta matematiki},
pages = {117--129},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/}
}
TY - JOUR AU - T. S. Busel AU - I. D. Suprunenko TI - On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic JO - Trudy Instituta matematiki PY - 2022 SP - 117 EP - 129 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/ LA - en ID - TIMB_2022_30_1_a10 ER -
%0 Journal Article %A T. S. Busel %A I. D. Suprunenko %T On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic %J Trudy Instituta matematiki %D 2022 %P 117-129 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/ %G en %F TIMB_2022_30_1_a10
T. S. Busel; I. D. Suprunenko. On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic. Trudy Instituta matematiki, Tome 30 (2022) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/TIMB_2022_30_1_a10/