On the Lyapunov theorem for semi-dynamical systems
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the stability problem of semi-dynamical systems on an arbitrary metric space. Variants of theorems of Lyapunov's second method are presented in the form of sufficient conditions for non-asymptotic stability of compact positively invariant sets in the class of constant-sign auxiliary functions. A comparative analysis of the results of the second Lyapunov method is given, depending on the requirements regarding the zero-level set of Lyapunov functions. The relative non-asymptotic stability is studied when the Lyapunov function's zero level set consists of fixed points of the system. Illustrative examples are given.
@article{TIMB_2021_29_1_a8,
     author = {B. S. Kalitine},
     title = {On the {Lyapunov} theorem for semi-dynamical systems},
     journal = {Trudy Instituta matematiki},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a8/}
}
TY  - JOUR
AU  - B. S. Kalitine
TI  - On the Lyapunov theorem for semi-dynamical systems
JO  - Trudy Instituta matematiki
PY  - 2021
SP  - 94
EP  - 105
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a8/
LA  - ru
ID  - TIMB_2021_29_1_a8
ER  - 
%0 Journal Article
%A B. S. Kalitine
%T On the Lyapunov theorem for semi-dynamical systems
%J Trudy Instituta matematiki
%D 2021
%P 94-105
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a8/
%G ru
%F TIMB_2021_29_1_a8
B. S. Kalitine. On the Lyapunov theorem for semi-dynamical systems. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 94-105. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a8/

[1] Lyapunov A.M., Sobr. soch., v. 2, Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo AN SSSR, M.–L., 1956, 472 pp. | MR

[2] Barbashin E.A., Krasovskii N.N., “Ob ustoichivosti dvizheniya v tselom”, Doklady AN SSSR, 86:3 (1952), 453–456 | Zbl

[3] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fiz.-mat. lit., M., 1959, 212 pp.

[4] Barbashin E.A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR

[5] Zubov V.I., Ustoichivost dvizheniya (metody Lyapunova i ikh primenenie), 2-e izd., Vysshaya shkola, M., 1984, 232 pp. | MR

[6] Bhatia N.P., Szegö G., Stability Theory of Dynamical systems, Springer, Heidelberg-Berlin, 1970, 225 pp. | MR | Zbl

[7] Saperstone S.N., Semidynamical Systems in Infinite Dimensional Space, Springer, Berlin, 1981, 474 pp. | MR

[8] Sibirskii K.S., Shube A.S., Poludinamicheskie sistemy, Shtiintsa, Kishinev, 1987, 281 pp. | MR

[9] Kalitin B.S., “Otnositelnaya ustoichivost kompaktnykh mnozhestv”, Vestnik Belorusskogo un-ta. Seriya 1, fiz., mat., mekh., 1987, no. 1, 34–36 | Zbl

[10] Kalitin B.S., Kachestvennaya teoriya ustoichivosti dvizheniya dinamicheskikh sistem, BGU, Minsk, 2002, 198 pp.

[11] Auslander J., Seibert P., “Prolongations and Generalised Liapunov Functions”, Nonlinear Differential Equations and Nonlinear Mechanics, 1963, 456–462 | MR

[12] Kalitine V.S., “Sur la stabilité des ensembles compacts positivement invariants des systèmes dynamiques”, R.A.I.R.O. Automatique/Systems Analisys and Control, 16:3 (1982), 275–286 | MR | Zbl

[13] Kalitin B.S., “K ustoichivosti kompaktnykh mnozhestv”, Vestnik Belorusskogo un-ta. Seriya 1, fiz., mat., mekh., 1984, no. 3, 33–43

[14] Bulgakov N.G., Znakopostoyannye funktsii v teorii ustoichivosti, BGU, Minsk, 1984, 80 pp.

[15] Kalitin B.S., “K zadache Florio–Seiberta”, Differents. uravneniya, 25:4 (1989), 727–729 | MR | Zbl

[16] Kalitin B.S., “Razvitie teoremy Lyapunova ob ustoichivosti”, Differents. uravneniya, 27:5 (1989), 758–766

[17] Kalitine V.S., “Sur le théorème de la stabilité non asymptotique dans la méthode directe de Lyapunov”, Comptes Rendus Acad. Sci. Paris. Ser. 1, Mathématiques, 338 (2004), 163–166 | DOI | MR | Zbl

[18] Kalitin B.S., Ustoichivost differentsialnykh uravnenii (Metod znakopostoyannykh funktsii Lyapunova), LAP Lambert Academic Publishing, Saarbryuken, 2012, 230 pp.

[19] Kalitin B.S., Ustoichivost dinamicheskikh sistem (Metod znakopostoyannykh funktsii Lyapunova), LAP Lambert Academic Publishing, Saarbryuken, 2013, 259 pp.

[20] Kalitin B.S., “O reshenii zadach ustoichivosti pryamym metodom Lyapunova”, Izvestiya Vuzov. Matematika, 2017, no. 6, 33–43 | MR | Zbl

[21] Seibert P. Florio J.J.S., “On the Reduction to a Subspace of Stability Properties of Systems in Metric Space”, Annali di Matematica pura ed applicata, CLXIX:IV (1995), 291–320 | DOI | MR | Zbl

[22] Izman M.S., “Ustoichivost i mnozhestva prityazheniya v dispersnykh dinamicheskikh sistemakh”, Matematicheskie issledovaniya. Kishinev, 3:3 (1968), 60–78 | MR | Zbl

[23] Pliss V.A., “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izvestiya AN SSSR. Ser. Matematika, 28:6 (1964), 1297–1324 | Zbl

[24] Kalitin B.S., “Dopolnenie k teoreme Lyapunova dlya poludinamicheskikh sistem”, Differentsialnye uravneniya, 55:6 (2019), 1573–1574

[25] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Izd-vo fiz.-mat.-lit., M., 1959, 808 pp.

[26] Brockett R.W., “On the asymptotic properties of solutions of differential equations with multiple equilibria”, Journal of Differential Equations, 44:2 (1982), 249–262 | DOI | MR | Zbl

[27] Leonov G.A., Roitmat F., “Asimptoticheskoe povedenie reshenii differentsialnykh uravnenii na ploskom mnogoobrazii”, Vestnik LGU, ser. 1. Mat. Mekh. Astr., 1991, no. 1, 34–38 | Zbl

[28] Matrosov V.M., “Ob ustoichivosti mnozhestv neizolirovannykh polozhenii ravnovesiya neavtonomnykh sistem”, Tr. Kazanskogo aviats. in-ta, matematika i mekhanika, 1965, no. 89, 20–32

[29] Kalitin B.S., “Ustoichivost neizolirovannoi tochki pokoya”, Vestnik Belorusskogo un-ta. Ser. 1, Fizika. Matematika. Mekhanika, 1985, no. 3, 39–41 | MR | Zbl

[30] Moroz O.A., K ustoichivosti neizolirovannoi tochki pokoya v kriticheskom sluchae, Red. Kol. Zhurn. Vestsi AN BSSR. Ser.1, fiz.-mat. navuk. Minsk, Dep. v VINITI, 13.10.88. No 7401-V88

[31] Moroz O.A., “O neasimptoticheskoi ustoichivosti tochki pokoya po pervomu priblizheniyu”, Doklady AN BSSR, 34:7 (1990), 584–587 | MR | Zbl

[32] Moroz O.A., “K voprosu o neasimptoticheskoi ustoichivosti”, Vestnik Belorusskogo universiteta. Ser. 1. Fizika. Matematika. Mekhanika, 1991, no. 1, 62–64 | Zbl