On stabilization of discrete control systems
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The description of real processes (technical, economic, etc.) assumes limited possibility of observations and measurements, as well as dynamism and non-stationarity, which makes it difficult to find statistical estimates of parameters and use appropriate research methods. The article describes a a new approach to the problems of stabilization of a discrete dynamical system. .The problem of stabilization discrete systems is solved using pseudo-circulation of matrices and predictive control. The criteria for stabilization are set, and the conditions for the matrix of the control system are given, under which the system cannot be stabilized, no matter how the control feedback is built.
@article{TIMB_2021_29_1_a5,
     author = {V. V. Goryachkin and V. V. Krakhotko},
     title = {On stabilization of discrete control systems},
     journal = {Trudy Instituta matematiki},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a5/}
}
TY  - JOUR
AU  - V. V. Goryachkin
AU  - V. V. Krakhotko
TI  - On stabilization of discrete control systems
JO  - Trudy Instituta matematiki
PY  - 2021
SP  - 67
EP  - 73
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a5/
LA  - ru
ID  - TIMB_2021_29_1_a5
ER  - 
%0 Journal Article
%A V. V. Goryachkin
%A V. V. Krakhotko
%T On stabilization of discrete control systems
%J Trudy Instituta matematiki
%D 2021
%P 67-73
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a5/
%G ru
%F TIMB_2021_29_1_a5
V. V. Goryachkin; V. V. Krakhotko. On stabilization of discrete control systems. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a5/

[1] Leonov G.A., Shumarov M.M., Metody stabilizatsii lineinykh upravlyaemykh sistem, SPb, 2005, 420 pp.

[2] Barbashin E.A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967

[3] Bellman R., Dinamicheskoe programmirovanie, Inostrannaya literatura, M., 1960

[4] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | MR

[5] Fomin V.N., Fradkov A.L., Yakubovich V.A., Adaptivnoe upravlenie dinamicheskimi ob'ektami, Nauka, M., 1981 | MR

[6] Kwon W.H., Advances in predictive control: Theory and application, Seoul Nat. Univ., Seoul, 1995

[7] Letov A.M., Dinamika poleta i upravlenie, Nauka, M., 1969

[8] Krylov V.I., Bobkov V.V., Monastyrnyi P.I., Vychislitelnye metody vysshei matematiki, v. 1, “Vysheishaya shkola”, Mn., 1972, 584 pp. | MR

[9] Albert A., Regressiya, psevdoregressiya i rekurrentnoe otsenivanie, Nauka, M., 1979

[10] Gantmakher F.R., Teoriya matrits, Nauka, M., 1967, 576 pp. | MR

[11] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[12] Shevtsov G.S., Kryukova O.G., Myznikova B.I., Chislennye metody lineinoi algebry, Lan, SPb., 2011, 496 pp.

[13] Moroz A.I., Kurs teorii sistem, Vys. shk., M., 1987, 307 pp.

[14] Kuntsevich V.M., Upravlenie v usloviyakh neopredelennosti: garantirovannye rezultaty v zadachakh upravleniya i identifikatsii, Navuk. dumka, Kiev, 2006, 264 pp.