Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2021_29_1_a2, author = {A. B. Antonevich and E. V. Kuzmina}, title = {Classical, analytical, formal and generalized solutions of a first-order differential equation with a meromorphic coefficient}, journal = {Trudy Instituta matematiki}, pages = {17--40}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a2/} }
TY - JOUR AU - A. B. Antonevich AU - E. V. Kuzmina TI - Classical, analytical, formal and generalized solutions of a first-order differential equation with a meromorphic coefficient JO - Trudy Instituta matematiki PY - 2021 SP - 17 EP - 40 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a2/ LA - ru ID - TIMB_2021_29_1_a2 ER -
%0 Journal Article %A A. B. Antonevich %A E. V. Kuzmina %T Classical, analytical, formal and generalized solutions of a first-order differential equation with a meromorphic coefficient %J Trudy Instituta matematiki %D 2021 %P 17-40 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a2/ %G ru %F TIMB_2021_29_1_a2
A. B. Antonevich; E. V. Kuzmina. Classical, analytical, formal and generalized solutions of a first-order differential equation with a meromorphic coefficient. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 17-40. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a2/
[1] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 568 pp. | MR
[2] S.T. Zavalischin, A.N. Sesekin, Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR
[3] N.V. Lazakovich, O.L. Yablonskii, A.K. Khmyzov, “Zadacha Koshi dlya sistem differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady Natsionalnoi akademii nauk Belarusi, 55:2 (2011), 5–9 | MR | Zbl
[4] A.B. Antonevich, T.A. Romanchuk, Uravneniya s delta-obraznymi koeffitsientami: metod konechnomernykh approksimatsii, LAP LAMBERT Academic Publishing, Saarbrucken, Germany, 2012, 148 pp.
[5] A.B. Antonevich, T.G. Shagova, “Obobschennye resheniya odnogo differentsialnogo uravneniya s ratsionalnym koeffitsientom”, Tavricheskii Vestnik Informatiki i Matematiki, 2019, no. 3, 23–36
[6] A.B. Antonevich, E.B. Kuzmina, “Resheniya differentsialnogo uravneniya $u'+\frac{s}{x}u=0$ v prostranstve raspredelenii”, Vesn. Grodz. dzyarzh. un-ta imya Ya. Kupaly. Ser. 2, Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnika i kiravanne, 10:2 (2020), 56–66
[7] E.B. Kuzmina, “Obobschennye resheniya differentsialnogo uravneniya pervogo poryadka s ratsionalnym koeffitsientom spetsialnogo vida”, Problemy fiziki, matematiki i tekhniki, 2021, no. 1 (46), 54–61 | MR
[8] V.S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp. | MR
[9] A.A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000, 120 pp.
[10] B.V. Shabat, Vvedenie v kompleksnyi analiz, Nauka, M., 1969, 566 pp. | MR
[11] G. Bremerman, Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1968