Optimality conditions for convex Copositive Programming
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 165-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

For convex copositive programming problems, several forms of new optimality conditions are formulated and proved. These conditions are based on a concept of immobile indices and do not require the fulfillment of any additional conditions (constraint qualifications or other).
@article{TIMB_2021_29_1_a14,
     author = {O. I. Kostyukova and T. V. Tchemisova},
     title = {Optimality conditions for convex {Copositive} {Programming}},
     journal = {Trudy Instituta matematiki},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/}
}
TY  - JOUR
AU  - O. I. Kostyukova
AU  - T. V. Tchemisova
TI  - Optimality conditions for convex Copositive Programming
JO  - Trudy Instituta matematiki
PY  - 2021
SP  - 165
EP  - 175
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/
LA  - en
ID  - TIMB_2021_29_1_a14
ER  - 
%0 Journal Article
%A O. I. Kostyukova
%A T. V. Tchemisova
%T Optimality conditions for convex Copositive Programming
%J Trudy Instituta matematiki
%D 2021
%P 165-175
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/
%G en
%F TIMB_2021_29_1_a14
O. I. Kostyukova; T. V. Tchemisova. Optimality conditions for convex Copositive Programming. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 165-175. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/

[1] Ahmed, F., Dür, M., Still, G., “Copositive Programming via semi-infinite optimization”, J. Optim. Theory Appl., 159 (2013), 322–340 | DOI | MR | Zbl

[2] Anjos, M. F., Lasserre, J. B. (eds.), Handbook of Semidefinite, Conic and Polynomial Optimization, International Series in Operational Research and Management Science, 166, Springer US, 2012, 138 pp. | MR

[3] Bomze, I. M., “Copositive optimization recent developments and applications”, European Journal of Operational Research, 2012, no. 3, 509–520 | DOI | MR | Zbl

[4] E. de Klerk, D. V. Pasechnik, “Approximation of the stability number number of a graph via copositive programming”, SIAM J. Optim., 12 (2002), 875–892 | DOI | MR | Zbl

[5] M. D\""ur, Copositive Programming a survey, Recent advances in optimization and its applications in engineering, eds. M. Diehl, F. Glineur, E. Jarlebring and W. Michielis, Springer-Verlag, Berlin–Heidelberg, 2010, 535 pp.

[6] Kortanek, K. O., Zhang, Q., “Perfect duality in semi-infinite and semidefinite programming”, Mathematical Programming. Ser. A, 91 (2001), 127–144 | DOI | MR | Zbl

[7] O. Kostyukova, T. Tchemisova, “Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets”, Journal of optimization theory and applications, 175:1 (2017), 76–103 | DOI | MR | Zbl

[8] Kostyukova, O., Tchemisova, T., “On equivalent representations and properties of faces of the cone of copositive matrices”, 2020, arXiv: 2012.03610 [math.OC] | MR

[9] Kostyukova, O., Tchemisova, T., Face reduction and the immobile indices approaches to regularization of linear Copositive Programming problems, 2021, arXiv: 2109.00080 [math.OC] | MR

[10] Kostyukova, O., Tchemisova, T., “On strong duality in linear copositive programming”, Journal of Global Optimization (to appear) | DOI | MR

[11] Kostyukova, O., Tchemisova, T., Dudina, O., “Immobile indices and CQ-free optimality criteria for linear copositive programming problems”, Set-Valued Var. Anal., 28 (2020), 89–107 | DOI | MR | Zbl

[12] Letchford, A. N., Parkes, A. J., “A guide to conic optimisation and its applications”, RAIRO Rech. Oper. Res., 52 (2018), 1087–1106 | DOI | MR | Zbl

[13] V. L. Application of E. Levin, “Helly's theorem to convex programming, problems of best approximation and related questions”, Math. USSR Sbornik, 8:2 (1969), 235–247 | DOI | MR

[14] H. Wolkowicz, “Some applications of optimization in matrix theory”, Linear Algebra and Its Applications, 40:C (1981), 101–118 | DOI | MR | Zbl

[15] Wolkowicz, H., Saigal, R., Vandenberghe, L., Handbook of Semide nite Programming theory, algorithms, and applications, Kluwer Academic Publishers, 2000 | MR