Optimality conditions for convex Copositive Programming
Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 165-175

Voir la notice de l'article provenant de la source Math-Net.Ru

For convex copositive programming problems, several forms of new optimality conditions are formulated and proved. These conditions are based on a concept of immobile indices and do not require the fulfillment of any additional conditions (constraint qualifications or other).
@article{TIMB_2021_29_1_a14,
     author = {O. I. Kostyukova and T. V. Tchemisova},
     title = {Optimality conditions for convex {Copositive} {Programming}},
     journal = {Trudy Instituta matematiki},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/}
}
TY  - JOUR
AU  - O. I. Kostyukova
AU  - T. V. Tchemisova
TI  - Optimality conditions for convex Copositive Programming
JO  - Trudy Instituta matematiki
PY  - 2021
SP  - 165
EP  - 175
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/
LA  - en
ID  - TIMB_2021_29_1_a14
ER  - 
%0 Journal Article
%A O. I. Kostyukova
%A T. V. Tchemisova
%T Optimality conditions for convex Copositive Programming
%J Trudy Instituta matematiki
%D 2021
%P 165-175
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/
%G en
%F TIMB_2021_29_1_a14
O. I. Kostyukova; T. V. Tchemisova. Optimality conditions for convex Copositive Programming. Trudy Instituta matematiki, Tome 29 (2021) no. 1, pp. 165-175. http://geodesic.mathdoc.fr/item/TIMB_2021_29_1_a14/