On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 98-108
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the graphs yielded by the Algebraic Graph Decomposition theory are used to study the Hartsfield-Ringel conjecture on the antimagicness of connected graphs. This way some results on the conjecture are obtained, namely the antimagicness of connected $(1,2)$-polar and $(1,2)$-decomposable graphs, as well as connected $(1,q)$-polar and $(1,q)$-decomposable graphs satisfying some specific conditions.
@article{TIMB_2020_28_1_a9,
author = {Vitaly Kalachev},
title = {On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs},
journal = {Trudy Instituta matematiki},
pages = {98--108},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a9/}
}
Vitaly Kalachev. On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 98-108. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a9/