On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 98-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the graphs yielded by the Algebraic Graph Decomposition theory are used to study the Hartsfield-Ringel conjecture on the antimagicness of connected graphs. This way some results on the conjecture are obtained, namely the antimagicness of connected $(1,2)$-polar and $(1,2)$-decomposable graphs, as well as connected $(1,q)$-polar and $(1,q)$-decomposable graphs satisfying some specific conditions.
@article{TIMB_2020_28_1_a9,
     author = {Vitaly Kalachev},
     title = {On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs},
     journal = {Trudy Instituta matematiki},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a9/}
}
TY  - JOUR
AU  - Vitaly Kalachev
TI  - On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs
JO  - Trudy Instituta matematiki
PY  - 2020
SP  - 98
EP  - 108
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a9/
LA  - en
ID  - TIMB_2020_28_1_a9
ER  - 
%0 Journal Article
%A Vitaly Kalachev
%T On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs
%J Trudy Instituta matematiki
%D 2020
%P 98-108
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a9/
%G en
%F TIMB_2020_28_1_a9
Vitaly Kalachev. On the antimagic labeling of $(1,q)$-polar and $(1,q)$-decomposable graphs. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 98-108. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a9/