An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 63-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of removing the minimal number of vertices of a given graph so that the resulting graph contains no cycles $C_4$ on 4 vertices and no paths $P_5$ on 5 vertices as subgraphs is considered. A 4-approximation algorithm for this problem is described.
@article{TIMB_2020_28_1_a6,
     author = {V. V. Lepin},
     title = {An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph},
     journal = {Trudy Instituta matematiki},
     pages = {63--73},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph
JO  - Trudy Instituta matematiki
PY  - 2020
SP  - 63
EP  - 73
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/
LA  - ru
ID  - TIMB_2020_28_1_a6
ER  - 
%0 Journal Article
%A V. V. Lepin
%T An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph
%J Trudy Instituta matematiki
%D 2020
%P 63-73
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/
%G ru
%F TIMB_2020_28_1_a6
V. V. Lepin. An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/