An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 63-73
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of removing the minimal number of vertices of a given graph so that the resulting graph contains no cycles $C_4$ on 4 vertices and no paths $P_5$ on 5 vertices as subgraphs is considered. A 4-approximation algorithm for this problem is described.
@article{TIMB_2020_28_1_a6,
author = {V. V. Lepin},
title = {An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph},
journal = {Trudy Instituta matematiki},
pages = {63--73},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/}
}
TY - JOUR
AU - V. V. Lepin
TI - An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph
JO - Trudy Instituta matematiki
PY - 2020
SP - 63
EP - 73
VL - 28
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/
LA - ru
ID - TIMB_2020_28_1_a6
ER -
V. V. Lepin. An approximation algorithm for finding a $\{C_4,P_5\}$-hitting set of the minimal weight in a graph. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a6/