The limitation topology and the functor $C(X,Y)$
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 57-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the category $\mathbf{\Pi}$ where the objects are pairs of topological spaces $(X,Y)$ and the morphisms of a pair $(X,Y)$ to a pair $(E,Z)$ are pairs of continuous maps $(\varphi,\psi)$ where $\varphi :E\mapsto X$, $\psi:Y\mapsto Z$. The space of continuous maps $C_{Lim} (X,Y)$ with the limitation topology defined by H. Torunczyk is assigned to each pair $(X,Y)$. It is proved that this correspondence determines a covariant functor $C_{Lim}$ from the category $\mathbf{\Pi}$ to the category $Top$ of topological spaces with continuous maps. Necessary and sufficient conditions are found to distinguish the subcategory $\mathcal{K}\subset\mathbf{\Pi}$ on which the functor $C_{Lim}$ is continuous.
@article{TIMB_2020_28_1_a5,
author = {H. O. Kukrak and V. L. Timokhovich},
title = {The limitation topology and the functor $C(X,Y)$},
journal = {Trudy Instituta matematiki},
pages = {57--62},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/}
}
H. O. Kukrak; V. L. Timokhovich. The limitation topology and the functor $C(X,Y)$. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/