The limitation topology and the functor $C(X,Y)$
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 57-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the category $\mathbf{\Pi}$ where the objects are pairs of topological spaces $(X,Y)$ and the morphisms of a pair $(X,Y)$ to a pair $(E,Z)$ are pairs of continuous maps $(\varphi,\psi)$ where $\varphi :E\mapsto X$, $\psi:Y\mapsto Z$. The space of continuous maps $C_{Lim} (X,Y)$ with the limitation topology defined by H. Torunczyk is assigned to each pair $(X,Y)$. It is proved that this correspondence determines a covariant functor $C_{Lim}$ from the category $\mathbf{\Pi}$ to the category $Top$ of topological spaces with continuous maps. Necessary and sufficient conditions are found to distinguish the subcategory $\mathcal{K}\subset\mathbf{\Pi}$ on which the functor $C_{Lim}$ is continuous.
@article{TIMB_2020_28_1_a5,
     author = {H. O. Kukrak and V. L. Timokhovich},
     title = {The limitation topology and the functor $C(X,Y)$},
     journal = {Trudy Instituta matematiki},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/}
}
TY  - JOUR
AU  - H. O. Kukrak
AU  - V. L. Timokhovich
TI  - The limitation topology and the functor $C(X,Y)$
JO  - Trudy Instituta matematiki
PY  - 2020
SP  - 57
EP  - 62
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/
LA  - ru
ID  - TIMB_2020_28_1_a5
ER  - 
%0 Journal Article
%A H. O. Kukrak
%A V. L. Timokhovich
%T The limitation topology and the functor $C(X,Y)$
%J Trudy Instituta matematiki
%D 2020
%P 57-62
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/
%G ru
%F TIMB_2020_28_1_a5
H. O. Kukrak; V. L. Timokhovich. The limitation topology and the functor $C(X,Y)$. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/

[1] Timokhovich V. L., Frolova D. S., “Topologii ravnomernoi skhodimosti. Sobstvennost (v smysle Arensa-Dugundzhi) i sekventsialnaya sobstvennost”, Izv. vuzov. Matem., 2013, no. 9, 45–57 | MR | Zbl

[2] Timokhovich V. L., Frolova D. S., “O svoistvakh infimalnoi topologii prostranstva otobrazhenii”, Izv. vuzov. Matem., 2016, no. 4, 87–99 | MR | Zbl

[3] Kukrak G. O., Timokhovich V. L., Frolova D. S., “Nekotorye topologicheskie svoistva funktora $C(X,Y)$”, Trudy inst. matem. NAN Belarusi, 26:1 (2018), 71–78 | MR

[4] Kukrak G. O., Timokhovich V. L., “O nepreryvnosti funktorov vida $C(X,Y)$”, Zhurnal Bel.gos.universiteta. Matematika, informatika, 2020, no. 1, 22–29 | MR

[5] Torunczyk H., “Characterizing Hilbert space topology”, Fundam. math., 111:3 (1981), 247–262 | DOI | MR | Zbl

[6] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992

[7] Bowers P., “Limitation topologies on function spaces”, Trans. Amer. Math. Soc., 314:1 (1989), 421–431 | DOI | MR | Zbl

[8] Sakai K., Geometric Aspects of General Topology, Springer, Japan, 2013 | MR | Zbl

[9] Bacon P., “The compactness of countably compact spaces”, Pacific J. Math., 32:3 (1970), 587–592 | DOI | MR | Zbl

[10] Kukrak G. O., Timokhovich V. L., “O predele obratnogo spektra eksponentsialnykh prostranstv”, Vestn. BGU. Ser. 1, 2001, no. 1, 51–55 | MR | Zbl

[11] Frolova D. S., “O sekventsialno sobstvennykh topologiyakh prostranstva otobrazhenii”, Trudy inst.matem. NAN Belarusi, 21:1 (2013), 102–108 | Zbl

[12] Engelking R., Obschaya topologiya, Mir, M., 1986