The limitation topology and the functor $C(X,Y)$
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 57-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the category $\mathbf{\Pi}$ where the objects are pairs of topological spaces $(X,Y)$ and the morphisms of a pair $(X,Y)$ to a pair $(E,Z)$ are pairs of continuous maps $(\varphi,\psi)$ where $\varphi :E\mapsto X$, $\psi:Y\mapsto Z$. The space of continuous maps $C_{Lim} (X,Y)$ with the limitation topology defined by H. Torunczyk is assigned to each pair $(X,Y)$. It is proved that this correspondence determines a covariant functor $C_{Lim}$ from the category $\mathbf{\Pi}$ to the category $Top$ of topological spaces with continuous maps. Necessary and sufficient conditions are found to distinguish the subcategory $\mathcal{K}\subset\mathbf{\Pi}$ on which the functor $C_{Lim}$ is continuous.
@article{TIMB_2020_28_1_a5,
     author = {H. O. Kukrak and V. L. Timokhovich},
     title = {The limitation topology and the functor $C(X,Y)$},
     journal = {Trudy Instituta matematiki},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/}
}
TY  - JOUR
AU  - H. O. Kukrak
AU  - V. L. Timokhovich
TI  - The limitation topology and the functor $C(X,Y)$
JO  - Trudy Instituta matematiki
PY  - 2020
SP  - 57
EP  - 62
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/
LA  - ru
ID  - TIMB_2020_28_1_a5
ER  - 
%0 Journal Article
%A H. O. Kukrak
%A V. L. Timokhovich
%T The limitation topology and the functor $C(X,Y)$
%J Trudy Instituta matematiki
%D 2020
%P 57-62
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/
%G ru
%F TIMB_2020_28_1_a5
H. O. Kukrak; V. L. Timokhovich. The limitation topology and the functor $C(X,Y)$. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a5/