Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions
Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 32-39

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the classical solutions of the first and second mixed problems for a one-dimensional wave equation are studied. These problems are considered in the class of continuously differentiable functions of order greater than two. The classical solutions of the problems posed are obtained in an analytical form. The uniqueness of the solutions found is proved.
@article{TIMB_2020_28_1_a3,
     author = {V. I. Korzyuk and I. S. Kozlovskaja and S. N. Naumavets},
     title = {Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions},
     journal = {Trudy Instituta matematiki},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - I. S. Kozlovskaja
AU  - S. N. Naumavets
TI  - Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions
JO  - Trudy Instituta matematiki
PY  - 2020
SP  - 32
EP  - 39
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/
LA  - ru
ID  - TIMB_2020_28_1_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A I. S. Kozlovskaja
%A S. N. Naumavets
%T Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions
%J Trudy Instituta matematiki
%D 2020
%P 32-39
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/
%G ru
%F TIMB_2020_28_1_a3
V. I. Korzyuk; I. S. Kozlovskaja; S. N. Naumavets. Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 32-39. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/