Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2020_28_1_a3, author = {V. I. Korzyuk and I. S. Kozlovskaja and S. N. Naumavets}, title = {Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions}, journal = {Trudy Instituta matematiki}, pages = {32--39}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/} }
TY - JOUR AU - V. I. Korzyuk AU - I. S. Kozlovskaja AU - S. N. Naumavets TI - Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions JO - Trudy Instituta matematiki PY - 2020 SP - 32 EP - 39 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/ LA - ru ID - TIMB_2020_28_1_a3 ER -
%0 Journal Article %A V. I. Korzyuk %A I. S. Kozlovskaja %A S. N. Naumavets %T Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions %J Trudy Instituta matematiki %D 2020 %P 32-39 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/ %G ru %F TIMB_2020_28_1_a3
V. I. Korzyuk; I. S. Kozlovskaja; S. N. Naumavets. Classical solutions of mixed problems for a one-dimensional wave equation in the class of smooth high-order functions. Trudy Instituta matematiki, Tome 28 (2020) no. 1, pp. 32-39. http://geodesic.mathdoc.fr/item/TIMB_2020_28_1_a3/
[1] Baranovskaya S. N., Yurchuk N. I., “Smeshannaya zadacha dlya uravneniya kolebaniya struny s zavisyaschei ot vremeni kosoi proizvodnoi v kraevom uslovii”, Differentsialnye uravneniya, 45:8 (2009), 1188–1191 | MR | Zbl
[2] Korzyuk V. I., Cheb E. S., Shirma M. S., “Reshenie pervoi smeshannoi zadachi dlya volnovogo uravneniya metodom kharakteristik”, Trudy Instituta matematiki, 17:2 (2009), 23–24
[3] Korzyuk V. I., Cheb E. S., Karpechina A. A., “Klassicheskoe reshenie pervoi smeshannoi zadachi v polupolose dlya lineinogo giperbolicheskogo uravneniya vtorogo poryadka”, Trudy Instituta matematiki, 20:2 (2012), 64–74 | MR | Zbl
[4] Korzyuk V. I., Kozlovskaya I. S., “Ob usloviyakh soglasovaniya v granichnykh zadachakh dlya giperbolicheskikh uravnenii”, Dokl. NAN Belarusi, 57:5 (2013), 37–42 | MR | Zbl
[5] Korzyuk V. I., Kozlovskaya I. S., Naumovets S. N., “Klassicheskoe reshenie pervoi smeshannoi zadachi odnomernogo volnovogo uravneniya s usloviyami tipa Koshi”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 2015, no. 1, 7–20
[6] Korzyuk V. I., Naumovets S. N., Kozlovskaya I. S., “Klassicheskie resheniya v teorii differentsialnykh uravnenii s chastnymi proizvodnymi”, Studia i materialy Europejska Uczelnia Informatyczno-Ekonomiczna w Warszawie, 2015, no. 1(9), 55–78
[7] Korzyuk V. I., Naumovets S. N., “Klassicheskoe reshenie smeshannoi zadachi dlya odnomernogo volnovogo uravneniya s proizvodnymi vysokogo poryadka v granichnykh usloviyakh”, Dokl. NAN Belarusi, 60:3 (2016), 11–17 | MR | Zbl
[8] Korzyuk V. I., “Metod kharakteristicheskogo parallelogramma na pri-mere pervoi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya”, Dokl. NAN Belarusi, 61:3 (2017), 7–13 | MR | Zbl
[9] Korzyuk V. I., Naumovets S. N., Sevostyuk V. A., “O klassicheskom reshenii vtoroi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya”, Trudy Instituta matematiki, 26:1 (2018), 35–42
[10] Korzyuk V. I., Naumovets S. N., Serikov V. P., “Metod kharakteristicheskogo parallelogramma resheniya vtoroi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya”, Trudy Instituta matematiki, 26:1 (2018), 43–53
[11] Moiseev E. I., Korzyuk V. I., Kozlovskaya I. S., “Klassicheskoe reshenie zadachi s integralnym usloviem dlya odnomernogo volnovogo uravneniya”, Differentsialnye uravneniya, 50:10 (2014), 1373–1385 | DOI | Zbl
[12] Korzyuk V. I., Naumovets S. N., Kozlovskaya I. S., “Klassicheskoe reshenie zadachi dlya odnomernogo volnovogo uravneniya s integralnymi usloviyami vtorogo roda”, Differentsialnye uravneniya, 55:3 (2019), 353–362 | DOI | MR | Zbl
[13] Moiseev E. I., Lomovtsev F. E., Novikov E. N., “Neodnorodnoe faktorizovannoe giperbolicheskoe uravnenie vtorogo poryadka v chetverti ploskosti pri polunestatsionarnoi vtoroi kosoi proivodnoi v granichnom uslovii”, Dokl. Rossiiskoi akademii nauk, 459:5 (2014), 544–549 | DOI | Zbl
[14] Lomovtsev F. E., Novikov E. N., “Neobkhodimye i dostatochnye usloviya kolebanii ogranichennoi struny pri kosykh proizvodnykh v granichnykh usloviyakh”, Differentsialnye uravneniya, 50:1 (2014), 126–129 | DOI | Zbl
[15] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, V desyati chastyakh, v. 1, Minsk, 2017, 45 pp.
[16] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, V desyati chastyakh, v. 2, Minsk, 2017, 52 pp.
[17] Korzyuk V. I., Mandrik A. A., “Pervaya smeshannaya zadachi dlya nestrogo giperbolicheskogo uravneniya tretego poryadka v zamknutoi oblasti”, Differentsialnye uravneniya, 52:6 (2016), 788–802 | DOI | Zbl
[18] Korzyuk V. I., Mandrik A. A., “Pervaya smeshannaya zadacha v polupolose dlya neodnorodnogo nestrogo giperbolicheskogo uravneniya tretego poryadka”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 2015, no. 4, 10–17