Topological indices of cographs
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 108-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wiener index, the Harary index and edge-Wiener index are classic and well-known topological indices for the characterization of molecular graphs. Firstly, we give the formulae and algorithms for these topological indices of the complements of trees and cographs. Secondly, we present some sufficient conditions for a cograph to be Hamiltonian.
Keywords: cograph, Wiener index, edge-Wiener index, Harary index, Hamiltonicity, Hamiltonian connectivity.
@article{TIMB_2019_27_1_a9,
     author = {V. V. Lepin and V. I. Benediktovich and M. Talmaciu},
     title = {Topological indices of cographs},
     journal = {Trudy Instituta matematiki},
     pages = {108--126},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a9/}
}
TY  - JOUR
AU  - V. V. Lepin
AU  - V. I. Benediktovich
AU  - M. Talmaciu
TI  - Topological indices of cographs
JO  - Trudy Instituta matematiki
PY  - 2019
SP  - 108
EP  - 126
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a9/
LA  - en
ID  - TIMB_2019_27_1_a9
ER  - 
%0 Journal Article
%A V. V. Lepin
%A V. I. Benediktovich
%A M. Talmaciu
%T Topological indices of cographs
%J Trudy Instituta matematiki
%D 2019
%P 108-126
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a9/
%G en
%F TIMB_2019_27_1_a9
V. V. Lepin; V. I. Benediktovich; M. Talmaciu. Topological indices of cographs. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 108-126. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a9/

[1] Azari M., A. Iranmanesh, A. Tehranian, “A method for calculating an edge version of the Wiener number of a graph operation”, Util. Math., 87 (2012), 151–164

[2] Azari M., A. Iranmanesh, “Computation of the edge Wiener indices of the sum of graphs”, Ars. Combin., 100 (2011), 113–128

[3] Azari M., A. Iranmanesh, “Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori”, Topics in Chemical Graph Theory, ed. I. Gutman, Univ. Kragujevac, Kragujevac, 2014, 69–90

[4] Azari M., A. Iranmanesh, “The second edge-Wiener index of some composite graphs”, Miskolc Math. Notes, 15:2 (2014), 305–316

[5] Benediktovich V.I., “Spectral condition for Hamiltonicity of a graph”, Linear Algebra Appl, 494 (2016), 70–79

[6] Berge C., Graphs and Hypergraphs, North-Holland, Amsterdam, 1973

[7] Bond J.A., Chvatal V., “A method in graph theory”, Discr. Math., 15:2 (1976), 111–135

[8] Brouwer A.E., Haemers W.H., Spectra of graphs, Springer, 2011

[9] Cai G.-X, M.-L. Ye, Y. Gui, R. Li, “Hyper-Wiener index and Hamiltonicity of graphs”, Ars Combinatoria, 139 (2018), 175–184

[10] Chen L., X. Li and M. Liu, “The (revised) Szeged index and the Wiener index of a nonbipartite graph”, European J. Combin., 36 (2014), 237–246

[11] Chen W., Zhang X., “The number of edges, spectral radius and Hamiltonian-connectedness of graphs”, J. Comb. Optim., 35 (2018), 1104–1127

[12] Chvatal V., “On Hamiltonian's ideals”, J. Comb. Theory B, 12 (1972), 163–168

[13] Corneil D. G., Y. Perl, and L. K. Stewart, “A linear recognition algorithm for cographs”, SIAM Journal on Computing, 14:4 (1985), 926–934

[14] Croitoru C., E. Olaru, M. Talmaciu, “Confidentially connected graphs.”, The annals of the University “Dunarea de Jos” of Galati, Proceedings of the international conference “The risk in contemporany economy”, Supplement to Tome XVIII (XXII), 2000, 17–20

[15] Croitoru C., M. Talmaciu, “On Confidentially connected graphs”, Bul. Stiint. Univ. Baia Mare, Ser B, Matematica - Informatica, XVI:1 (2000), 13–16

[16] Cui Z., B. Liu, “On Harary matrix, Harary index and Harary energy”, MATCH Commun. Math. Comput. Chem., 68 (2012), 815–823

[17] Dankelmann P., I. Gutman, S.Mukwembi and H. C. Swart, “The edge Wiener index of a graph”, Discrete Math, 309 (2009), 3452–3457

[18] Darafsheh M. R., M. H. Khalifeh, “Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer”, Ars Combin, 100 (2011), 289–298

[19] Das K. Ch., “Sharp bounds for the sum of the squares of the degrees of a graph”, Kragujevac J. Math, 25 (2003), 31–49

[20] Das K. C., K. Xu, I. N. Cangul, A. S. Cevik, A. Graovac, “On the Harary index of graph operations.”, Journal of Inequalities and Applications, 1 (2013), 1–16

[21] Diudea M. V., “Hosoya Polynomial in tori”, MATCH Commun. Math. Comput. Chem, 45 (2002), 109–122

[22] Diudea M. V., “Wiener index of dendrimers”, MATCH Commun. Math. Comput. Chem, 32 (1995), 71–83

[23] Dobrynin A. A., I. Gutman, S. Klav$\check{z}$ar and P. $\check{Z}$igert, “Wiener index of hexagonal systems”, Acta Appl. Math, 72 (2002), 247–294

[24] Dobrynin A. A., R. Entringer and I. Gutman, “Wiener index of trees: theory and applications”, Acta Appl. Math, 66 (2001), 211–249

[25] Dobrynin A., I. Gutman, “On a graph invariant related to the sum of all distances in a graph”, Publ. Inst. Math. (Beograd), 56 (1994), 18–22

[26] Dong H., B. Zhou, “Maximum Wiener index of unicyclic graphs with fixed maximum degree”, Ars Combin, 103 (2012), 407–416

[27] Do$\check{s}$li.c T., “Vertex-Weighted Wiener polynomials for composite graphs”, ArsMath. Contemp, 1 (2008), 66–80

[28] Entringer R. C., D. E. Jackson and D. A. Snyder, “Distance in graphs”, Czech. Math. J., 26 (1976), 283–296

[29] Entringer R. C., “Distance in graphs: Trees”, J. Combin. Math. Combin. Comput, 24 (1997), 65–84

[30] Fink J., B. Lužar and R. Škrekovski, “Some remarks on inverse Wiener index problem”, Discrete Appl. Math, 160 (2012), 1851–1858

[31] Gutman I., “Calculating the Wiener number: the Doyle-Graver method”, J. Serb. Chem. Soc, 58 (1993), 745–750

[32] Gutman I., “Hosoya polynomial and the distance of the total graph of a tree”, Univ. Beograd. Publ. Elektrotehn. Fak. Ser.Mat, 10 (1999), 53–58

[33] Gutman I., “A new method for the calculation of the Wiener number of acyclic molecules”, J. Mol. Struct. (Theochem), 285 (1993), 137–142

[34] Gutman I., J. Lu and M. A. Bautiche, “On distance in complements of graphs”, Ser. A: appl. math. Inform and mech, 8:1 (2016), 35–42

[35] Gutman I., O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986

[36] Gutman I., R. Cruz and J. Rada, “Wiener index of Eulerian graphs”, Discrete Appl. Math., 162 (2014), 247–250

[37] Gutman I., S. Klavzar, M. Petkovsek and P. Zigert, “On Hosoya polynomials of benzenoid graphs”, MATCH Commun. Math. Comput. Che, 43 (2001), 49–66

[38] Gutman I., Y. N. Yeh, S. L. Lee and Y. L. Luo, “Some recent results in the theory of the Wiener number”, Indian J. Chem, 32A (1993), 651–661

[39] Gutman I., Y. Yeh, “The sum of all distances in bipartite graphs”, Math. Slovaca, 45 (1995), 327–334

[40] Hosoya H., “On some counting polynomials in Chemistry”, Discrete Appl.Math., 19 (1988), 239–257

[41] Hua H.-B., B. Ning, “Wiener index, Harary index and Hamiltonicity of graphs”, Match Communications in Mathematical and in Computer Chemistry, 78:1 (2016), 153–162

[42] Hua H.-B., M. Wang, “On Harary index and traceable graphs”, MATCH Commun. Math. Comput. Chem, 70 (2013), 297–300

[43] Iranmanesh A., A. S. Kafrani, “Computation of the first edge-Wiener index of TUC4C8(S) nanotube”, MATCH Commun. Math. Comput. Chem, 62:2 (2011), 311–352

[44] Iranmanesh A., A. S. Kafrani, O. Khormali, “A New Version of Hyper-Wiener Index”, MATCH Commun. Math. Comput. Chem, 65:1 (2011), 113–122

[45] Iranmanesh A., I. Gutman, O. Khormali and A. Mahmiani, “The edge versions of Wiener index”, MATCH Commun. Math. Compute. Chem, 61 (2009), 663–672

[46] Iranmanesh A., M. Azari, “Edge-Wiener descriptors in chemical graph theory: A survey”, Curr. Org. Chem, 19:3 (2015), 219–239

[47] Ivanciuc O., T. S. Balaban, A. T. Balaban, “Reciprocal distance matrix, related local vertex invariants and topological indices”, J. Math. Chem, 12 (1993), 309–318

[48] Khalifeh M. H., H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, “Some new results on distance-based graph invariants”, European J. Combin, 30 (2009), 1149–1163

[49] Klavžar S.. M. J. Nadja-Arani, “Wiener index in weighted graphs via unication of $\Theta *$-classes”, European J. Combin, 36 (2014), 71–76

[50] Klein D.-J., I. Lukovits and I. Gutman, “On the defination of the hyper-Wiener index for cycle-containing structures”, J. Chem. Inf. Comput. Sci, 35 (1995), 50–52

[51] Knor M., P. Potočnik and R. Škrekovski, “On a conjecture about Wiener index in iterated line graphs of trees”, Discrete Math., 312 (2012), 1094–1105

[52] Knor M., P. Potočnik and R. Škrekovski, “Wiener index of iterated line graphs of trees homeomorphic to H”, Discrete Math., 313 (2013), 1104–1111

[53] Knor M., P. Potočnik and R. Škrekovski, “Wiener index of iterated line graphs of trees homeomorphic to the claw $K_{1,3}$”, Ars Math. Contemp., 6 (2013), 211–219

[54] Knor M., R. Škrekovski, “Wiener index of generalized 4-stars and of their quadratic line graphs”, Australas. J. Comb, 58 (2014), 119–126

[55] Krnc M., R. Skrekovski, “On Wiener Inverse Interval Problem”, MATCH Commun. Math. Comput. Chem, 75 (2016), 71–80

[56] Lepovic M., I. Gutman, “A collective property of trees and chemical trees”, Journal of Chemical Information and Modeling, 38:5 (1998), 823–826

[57] Li R., “Harary index and some Hamiltonian properties of graphs”, AKCE International Journal of Graphs and Combinatorics, 12 (2015), 64–69

[58] Li R., “Wiener Index and Some Hamiltonian Properties of Graphs”, International Journal of Mathematics and Soft Computing, 5:1 (2015), 11–16

[59] Li X., L. Wang, “Solutions for two conjectures on the inverse problem of the Wiener index of peptoids”, Siam J. Discrete Math, 17 (2003), 210–218

[60] Liu R.-F., X. Du, H.-C. Jia, “Some observations on Harary index and traceable graphs”, MATCH Commun. Math. Comput. Chem, 77:1 (2017), 195–208

[61] Liu R.-F., X. Du, H.-C. Jia, “Wiener index on traceable and Hamiltonian graph”, Bull. Aust. Math. Soc, 94 (2016), 362–372

[62] Nadjafi-Arani M. J., H. Khodashenas and A. R. Ashrafi, “Relationship between edge Szeged and edge Wiener indices of graphs”, Glas.Mat. Ser. III, 47 (2012), 21–29

[63] Nasiri R., H. Yousefi-Azari, M. R.Darafsheh and A. R. Ashrafi, “Remarks on the Wiener index of unicyclic graphs”, J. Appl.Math. Comput, 41:1-2 (2013), 49–59

[64] Nikolić S., N. Trinajstić and Z. Mihalić, “The Wiener index: Development and applications”, Croat. Chem. Acta, 68 (1995), 105–129

[65] Plavšić D., S. Nikolić, N. Trinajstić, Z. Mihalić, “On the Harary index for the characterization of chemical graphs”, J. Math. Chem, 12 (1993), 235–250

[66] Quadras J., K.Arputha Christy and A.Nelson, “Edge-Wiener Indices of n-circumscribed Peri-condensed Benzenoid Graphs”, International Journal of Mathematics And its Applications, 4:4 (2016), 117–123

[67] Sagan B. E., Y. Yeh and P. Zhang, “The Wiener polynomial of a graph”, Inter. J. Quantum Chem, 60 (1996), 959–969

[68] Senbagamalar J., J. Baskar Babujee AND I. Gutman, “On Wiener index of graph complements”, Transactions on Combinatorics, 3:2 (2014), 11–15

[69] Sills A. V., H. Wang, “On the maximal Wiener index and related questions”, Discrete Appl. Math., 160 (2012), 1615–1623

[70] Soltani A., A. Iranmanesh, “On the edge Wiener index”, Filomat, 28:3 (2014), 541–549

[71] Stevanovic D., “Hosoya polynomial of composite graphs”, Discrete Math, 235 (2001), 237–244

[72] Szeider S., “Generalizations of Matched CNF Formulas”, Annals of Mathematics and Artificial Intelligence, 43:1-4 (2005), 223–238

[73] Talmaciu M., Decomposition Problems in the Graph Theory with Applications in Combinatorial Optimization, Ph. D. Thesis, University “Al. I. Cuza” Iasi, Romania, 2002

[74] Talmaciu M., E. Nechita, “Recognition Algorithm for diamond-free graphs”, Informatica, 18:3 (2007), 457–462

[75] Terpai T., “Proof of a conjecture of V. Nikiforov”, Combinatorica, 31 (2011), 739–754

[76] Wagner S., “A note on the inverse problem for the Wiener index”, MATCH Commun. Math. Comput. Chem, 64 (2010), 639–646

[77] Wagner S., H. Wang, G. Yu,, “Molecular graphs and the inverse Wiener index problem.”, Discrete Appl. Math, 157 (2009), 1544–1554

[78] Wagner S., “On the Wiener index of random trees”, Discrete Math., 312 (2012), 1502–1511

[79] Walikar H. B., V. S. Shigehalli and H. S. Ramane, “Bounds on the Wiener number of a graph”, Communications in Mathematical and in Computer Chemistry/MATCH, 50 (2004), 117–132

[80] Wiener H., “Structural determination of paraffin boiling points”, J. Am. Chem. Soc, 69 (1947), 17–20

[81] Xu K., M. Liu, K. C. Das, I. Gutman and B. Furtula, “A survey on graphs extremal with respect to distance-based topological indices”, MATCH Commun. Math. Comput. Chem., 71:3 (2014), 461–508

[82] Yang and B. Y., Y. N. Yeh, “Wiener polynomials of some chemically interesting graphs”, Int. J. Quantum Chem., 99 (2004), 80–91

[83] Zeng T., “Harary index and Hamiltonian property of graphs”, MATCH Commun. Math. Comput. Chem., 70 (2013), 645–649

[84] Zhou Q., Broersma H., Wang L., Lu Y., “On sufficient spectral radius conditions for hamiltonicity”, Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 2019, 143–146