Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2019_27_1_a6, author = {V. V. Lepin}, title = {Solving the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in tree-cographs}, journal = {Trudy Instituta matematiki}, pages = {53--59}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a6/} }
TY - JOUR AU - V. V. Lepin TI - Solving the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in tree-cographs JO - Trudy Instituta matematiki PY - 2019 SP - 53 EP - 59 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a6/ LA - ru ID - TIMB_2019_27_1_a6 ER -
V. V. Lepin. Solving the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in tree-cographs. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a6/
[1] Lepin V.V., “Algoritmy dlya nakhozhdeniya nezavisimoi $\{K_1,K_2\}$-upakovki naibolshego vesa v grafe”, Trudy Instituta matematiki, 22:1 (2014), 78–97
[2] Lepin V.V., “Reshenie zadachi o vzveshennoi nezavisimoi $\{K_1,K_2\}$-upakovke na grafakh s ogranichennoi drevesnoi shirinoi”, Trudy Instituta matematiki, 23:1 (2015), 98–114
[3] Lepin V.V., “Reshenie zadachi o vzveshennoi nezavisimoi $\{K_1,K_2\}$-upakovke na grafakh so spetsialnymi blokami”, Trudy Instituta matematiki, 23:2 (2015), 62–71
[4] Tinhofer G., “Strong tree-cographs are Birkoff graphs”, Discrete Applied Mathematics, 22:3 (1989), 275–288