Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2019_27_1_a5, author = {V. I. Korzyuk and I. S. Kozlovskaja and S. N. Naumavets}, title = {Statement of border tasks on the plane dependent on the coefficients for the type of the wave {equation.~III}}, journal = {Trudy Instituta matematiki}, pages = {44--52}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a5/} }
TY - JOUR AU - V. I. Korzyuk AU - I. S. Kozlovskaja AU - S. N. Naumavets TI - Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~III JO - Trudy Instituta matematiki PY - 2019 SP - 44 EP - 52 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a5/ LA - ru ID - TIMB_2019_27_1_a5 ER -
%0 Journal Article %A V. I. Korzyuk %A I. S. Kozlovskaja %A S. N. Naumavets %T Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~III %J Trudy Instituta matematiki %D 2019 %P 44-52 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a5/ %G ru %F TIMB_2019_27_1_a5
V. I. Korzyuk; I. S. Kozlovskaja; S. N. Naumavets. Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~III. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 44-52. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a5/
[1] Korzyuk V. I., Kozlovskaya I. S., Naumovets S. N., “Postanovka granichnykh zadach na ploskosti v zavisimosti ot koeffitsientov dlya tipa volnovogo uravneniya. I”, Trudy Instituta matematiki, 27:1 (2019), 29–36
[2] Korzyuk V. I., Kozlovskaya I. S., Naumovets S. N., “Postanovka granichnykh zadach na ploskosti v zavisimosti ot koeffitsientov dlya tipa volnovogo uravneniya. II”, Trudy Instituta matematiki, 27:1 (2019), 37–43
[3] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, V desyati chastyakh, v. 1, Minsk, 2017, 45 pp.
[4] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, V desyati chastyakh, v. 2, Minsk, 2017, 52 pp.
[5] Korzyuk V. I., Naumovets S. N., Sevostyuk V. A., “O klassicheskom reshenii vtoroi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya.”, Trudy Instituta matematiki, 26:1 (2018), 35–42
[6] Korzyuk V. I., Naumovets S. N., Serikov V. P., “Metod kharakteristicheskogo parallelogramma resheniya vtoroi smeshannoi zadachi dlya odnomernogo volnovogo uravneniya.”, Trudy Instituta matematiki, 26:1 (2018), 43–53
[7] Korzyuk V. I., Naumovets S. N., “Klassicheskoe reshenie smeshannoi zadachi dlya odnomernogo volnovogo uravneniya s proizvodnymi vysokogo poryadka v granichnykh usloviyakh”, Dokl. NAN Belarusi, 60:3 (2016), 11–17
[8] Moiseev E. I., Korzyuk V. I., Kozlovskaya I. S., “Klassicheskoe reshenie zadachi s integralnym usloviem dlya odnomernogo volnovogo uravneniya”, Differentsialnye uravneniya, 50:10 (2014), 1373–1385
[9] Korzyuk V. I., Kozlovskaya I. S., Naumovets S. N., “Klassicheskoe reshenie pervoi smeshannoi zadachi odnomernogo volnovogo uravneniya s usloviyami tipa Koshi”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 2015, no. 1, 7–20