Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

In the half-strip we consider problems for a second-order equation with constant coefficients, whose operator represents a composition of first-order operators. The Cauchy and Dirichlet conditions join the equation. One of the coefficients of the equation as a parameter varies with respect to another quantity, sign. Depending on this, the correct problems for the simplest boundary conditions are considered.
@article{TIMB_2019_27_1_a3,
     author = {V. I. Korzyuk and I. S. Kozlovskaja and S. N. Naumavets},
     title = {Statement of border tasks on the plane dependent on the coefficients for the type of the wave {equation.~I}},
     journal = {Trudy Instituta matematiki},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - I. S. Kozlovskaja
AU  - S. N. Naumavets
TI  - Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I
JO  - Trudy Instituta matematiki
PY  - 2019
SP  - 29
EP  - 36
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/
LA  - ru
ID  - TIMB_2019_27_1_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A I. S. Kozlovskaja
%A S. N. Naumavets
%T Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I
%J Trudy Instituta matematiki
%D 2019
%P 29-36
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/
%G ru
%F TIMB_2019_27_1_a3
V. I. Korzyuk; I. S. Kozlovskaja; S. N. Naumavets. Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/