Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I
Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the half-strip we consider problems for a second-order equation with constant coefficients, whose operator represents a composition of first-order operators. The Cauchy and Dirichlet conditions join the equation. One of the coefficients of the equation as a parameter varies with respect to another quantity, sign. Depending on this, the correct problems for the simplest boundary conditions are considered.
@article{TIMB_2019_27_1_a3,
     author = {V. I. Korzyuk and I. S. Kozlovskaja and S. N. Naumavets},
     title = {Statement of border tasks on the plane dependent on the coefficients for the type of the wave {equation.~I}},
     journal = {Trudy Instituta matematiki},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - I. S. Kozlovskaja
AU  - S. N. Naumavets
TI  - Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I
JO  - Trudy Instituta matematiki
PY  - 2019
SP  - 29
EP  - 36
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/
LA  - ru
ID  - TIMB_2019_27_1_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A I. S. Kozlovskaja
%A S. N. Naumavets
%T Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I
%J Trudy Instituta matematiki
%D 2019
%P 29-36
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/
%G ru
%F TIMB_2019_27_1_a3
V. I. Korzyuk; I. S. Kozlovskaja; S. N. Naumavets. Statement of border tasks on the plane dependent on the coefficients for the type of the wave equation.~I. Trudy Instituta matematiki, Tome 27 (2019) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/TIMB_2019_27_1_a3/

[1] Korzyuk V. I., Kozlovskaya I. S., “Reshenie zadachi Koshi dlya giperbolicheskogo uravneniya s postoyannymi koeffitsientami v sluchae dvukh nezavisimykh peremennykh”, Differents. uravneniya, 48:5 (2012), 700–709

[2] Korzyuk V. I., Kozlovskaya I. S., “Reshenie zadachi Koshi giperbolicheskogo uravneniya dlya odnorodnogo differentsialnogo operatora v sluchae dvukh nezavisimykh peremennykh”, Doklady NAN Belarusi, 55:5 (2011), 9–13

[3] Korzyuk V. I., Cheb E. S., Karpechina A.A., “Klassicheskoe reshenie pervoi smeshannoi zadachi v polupolose dlya lineinogo giperbolicheskogo uravneniya vtorogo poryadka”, Trudy Instituta matematiki, 20:2 (2012), 64–74

[4] Korzyuk V. I., Kozlovskaya I. S., Kozlov A. I., “Caushy problem in half-plan for hyperbolic equation with constant coefficients”, Analytic methods of analysis and differential equations, AMA Cambridge scientific publishers, 2014, 45–71

[5] Korzyuk V. I., Kozlovskaya I. S., “Ob usloviyakh soglasovaniya v granichnykh zadachakh dlya giperbolicheskikh uravnenii”, Doklady NAN Belarusi, 57:5 (2013), 37–42

[6] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, V desyati chastyakh, v. 1, Minsk, 2017, 45 pp.

[7] Korzyuk V. I., Kozlovskaya I. S., Klassicheskie resheniya zadach dlya giperbolicheskikh uravnenii, V desyati chastyakh, v. 2, Minsk, 2017, 52 pp.

[8] Korzyuk V. I., Kozlovskaya I. S., Moiseev E. I., “Klassicheskoe reshenie zadachi s integralnym usloviem dlya odnomernogo volnovogo uravneniya”, Differents. uravneniya, 50:10 (2014), 1373–1385