On representation varieties of one class of HNN extensions
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 13-24
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate representation varieties $R_n(G(p,q))$ of the groups with the following presentation: $$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,y_1,\ldots,y_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$ where $p$ and $q$ are such integers that $p>|q|\geq1$, $m_i\ge 2$ for $i=1,\ldots,s$, $g\ge 2$,$U=[x_1,y_1]\ldots [x_g,y_g]W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is a reduced word in the free product of cyclic groups $H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast \langle b_k\rangle$. Irreducible components of $R_n(G(p,q))$ are found, their dimensions are calculated and every irreducible component of $R_n(G(p,q))$ is proved to be a rational variety.
@article{TIMB_2018_26_1_a3,
author = {A. N. Admiralova and V. V. Benyash-Krivets},
title = {On representation varieties of one class of {HNN} extensions},
journal = {Trudy Instituta matematiki},
pages = {13--24},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/}
}
TY - JOUR AU - A. N. Admiralova AU - V. V. Benyash-Krivets TI - On representation varieties of one class of HNN extensions JO - Trudy Instituta matematiki PY - 2018 SP - 13 EP - 24 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/ LA - ru ID - TIMB_2018_26_1_a3 ER -
A. N. Admiralova; V. V. Benyash-Krivets. On representation varieties of one class of HNN extensions. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 13-24. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/