On representation varieties of one class of HNN extensions
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 13-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate representation varieties $R_n(G(p,q))$ of the groups with the following presentation: $$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,y_1,\ldots,y_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$ where $p$ and $q$ are such integers that $p>|q|\geq1$, $m_i\ge 2$ for $i=1,\ldots,s$, $g\ge 2$,$U=[x_1,y_1]\ldots [x_g,y_g]W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is a reduced word in the free product of cyclic groups $H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast \langle b_k\rangle$. Irreducible components of $R_n(G(p,q))$ are found, their dimensions are calculated and every irreducible component of $R_n(G(p,q))$ is proved to be a rational variety.
@article{TIMB_2018_26_1_a3,
     author = {A. N. Admiralova and V. V. Benyash-Krivets},
     title = {On representation varieties of one class of {HNN} extensions},
     journal = {Trudy Instituta matematiki},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/}
}
TY  - JOUR
AU  - A. N. Admiralova
AU  - V. V. Benyash-Krivets
TI  - On representation varieties of one class of HNN extensions
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 13
EP  - 24
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/
LA  - ru
ID  - TIMB_2018_26_1_a3
ER  - 
%0 Journal Article
%A A. N. Admiralova
%A V. V. Benyash-Krivets
%T On representation varieties of one class of HNN extensions
%J Trudy Instituta matematiki
%D 2018
%P 13-24
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/
%G ru
%F TIMB_2018_26_1_a3
A. N. Admiralova; V. V. Benyash-Krivets. On representation varieties of one class of HNN extensions. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 13-24. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a3/