On exponents of homogeneous spaces
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 9-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the existence of a $G$-homeomorphism between an exponent of a homogeneous space $G/H$ and the $G$-Hilbert cube with unique fixed point and its connection with the lower normalizer of a closed subgroup. It is proved that the lower normalizer of a closed subgroup coincides with intersection of $\dim G+2$ many conjugate subgroups.
@article{TIMB_2018_26_1_a2,
     author = {S. M. Ageev},
     title = {On exponents of homogeneous spaces},
     journal = {Trudy Instituta matematiki},
     pages = {9--12},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a2/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - On exponents of homogeneous spaces
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 9
EP  - 12
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a2/
LA  - ru
ID  - TIMB_2018_26_1_a2
ER  - 
%0 Journal Article
%A S. M. Ageev
%T On exponents of homogeneous spaces
%J Trudy Instituta matematiki
%D 2018
%P 9-12
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a2/
%G ru
%F TIMB_2018_26_1_a2
S. M. Ageev. On exponents of homogeneous spaces. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 9-12. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a2/

[1] Bredon G., Introduction to Compact Transformation Groups, Academic Press, New York, 1972 | MR

[2] Ageev S. M., “Universalnye G-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Matem. sbornik, 203:6 (2012), 3–34 | DOI | Zbl

[3] Ageev S. M., “O probleme Zambakhidze i Smirnova”, Matem. zametki, 58:1 (1995), 11–16

[4] Bierstone E., Milman P. D., “Semianalytic and subanalytic sets”, Inst. Hautes Etudes Sci. Publ. Math., 67, 1988, 5–42 | DOI | MR | Zbl