Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 106-112
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\sigma =\{\sigma_{i} | i\in I\}$ be a partition of the set of all primes $\Bbb{P}$, $G$ be a finite group and $\sigma (G) =\{\sigma_{i} |\sigma_{i}\cap \pi (G)\ne \emptyset \}$.
A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma _{i}$-subgroup of $G$ for some $\sigma _{i}\in \sigma $ and $\mathcal{H}$ contains exactly one Hall $\sigma _{i}$-subgroup of $G$ for every $\sigma _{i}\in \sigma (G)$. A subgroup $A$ of $G$ is said to be ${\sigma}$-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set and $A$ permutes with each Hall $\sigma _{i}$-subgroup $H$ of $G$, that is, $AH=HA$ for all $i \in I$.
We characterize finite groups with a distributive lattice of ${\sigma}$-permutable subgroups.
@article{TIMB_2018_26_1_a13,
author = {A. N. Skiba},
title = {Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups},
journal = {Trudy Instituta matematiki},
pages = {106--112},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/}
}
A. N. Skiba. Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 106-112. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/