Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups
Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 106-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma =\{\sigma_{i} | i\in I\}$ be a partition of the set of all primes $\Bbb{P}$, $G$ be a finite group and $\sigma (G) =\{\sigma_{i} |\sigma_{i}\cap \pi (G)\ne \emptyset \}$. A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every member $\ne 1$ of $\mathcal{H}$ is a Hall $\sigma _{i}$-subgroup of $G$ for some $\sigma _{i}\in \sigma $ and $\mathcal{H}$ contains exactly one Hall $\sigma _{i}$-subgroup of $G$ for every $\sigma _{i}\in \sigma (G)$. A subgroup $A$ of $G$ is said to be ${\sigma}$-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set and $A$ permutes with each Hall $\sigma _{i}$-subgroup $H$ of $G$, that is, $AH=HA$ for all $i \in I$. We characterize finite groups with a distributive lattice of ${\sigma}$-permutable subgroups.
@article{TIMB_2018_26_1_a13,
     author = {A. N. Skiba},
     title = {Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups},
     journal = {Trudy Instituta matematiki},
     pages = {106--112},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups
JO  - Trudy Instituta matematiki
PY  - 2018
SP  - 106
EP  - 112
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/
LA  - en
ID  - TIMB_2018_26_1_a13
ER  - 
%0 Journal Article
%A A. N. Skiba
%T Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups
%J Trudy Instituta matematiki
%D 2018
%P 106-112
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/
%G en
%F TIMB_2018_26_1_a13
A. N. Skiba. Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 106-112. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/

[1] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, Walter de Gruyter, Berlin-New York, 2010 | MR | Zbl

[2] Schmidt R., Subgroup lattices of groups, Walter de Gruyter, Berlin-New York, 1994 | MR | Zbl

[3] Skiba A.N., “A generalization of a Hall theorem”, J. Algebra Appl., 15:4 (2015), 21–36 | MR

[4] Guo W., Skiba A.N., “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl

[5] Skiba A.N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[6] Kegel O.H., “Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten”, Arch. Math. (Basel), 30:3 (1978), 225–228 | DOI | MR | Zbl

[7] Ballester-Bolinches A., Ezquerro L.M., Classes of Finite groups, Springer, Dordrecht, 2006 | MR | Zbl

[8] Guo W., Skiba A.N., “On $\Pi$-quasinormal subgroups of finite groups”, Monatsh. Math. | DOI | MR

[9] Skiba A.N., On the lattice of the $\sigma$-permutable subgroups of a finite group, arXiv: 1703.01773 [math.GR]

[10] Skiba A.N., “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl

[11] Guo W., Skiba A.N., “On the lattice of ${\Pi}_{\mathfrak{I}}$-subnormal subgroups of a finite group”, Bull. Aust. Math. Soc. | DOI | MR

[12] Pazderski G., “On groups for which the lattice of normal subgroups is distributive”, Beiträge Algebra Geom., 24 (1987), 185–200 | MR | Zbl

[13] Kegel O.H., “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[14] Skiba A.N., “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[15] Skiba A.N., “On finite groups for which the lattice of $S$-permutable subgroups is distributive”, Arch. Math., 109 (2017), 9–17 | DOI | MR | Zbl

[16] Grätzer G., General Lattice Theory, Birkhäuser Verlag, Basel–Stuttgard, 1978 | MR | Zbl

[17] Ballester-Bolinches A., Ezquerro L.M., Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006 | MR | Zbl