Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2018_26_1_a13, author = {A. N. Skiba}, title = {Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups}, journal = {Trudy Instituta matematiki}, pages = {106--112}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/} }
A. N. Skiba. Finite~groups~with~a distributive~lattice of ~$\sigma$-permutable~subgroups. Trudy Instituta matematiki, Tome 26 (2018) no. 1, pp. 106-112. http://geodesic.mathdoc.fr/item/TIMB_2018_26_1_a13/
[1] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, Walter de Gruyter, Berlin-New York, 2010 | MR | Zbl
[2] Schmidt R., Subgroup lattices of groups, Walter de Gruyter, Berlin-New York, 1994 | MR | Zbl
[3] Skiba A.N., “A generalization of a Hall theorem”, J. Algebra Appl., 15:4 (2015), 21–36 | MR
[4] Guo W., Skiba A.N., “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl
[5] Skiba A.N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[6] Kegel O.H., “Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten”, Arch. Math. (Basel), 30:3 (1978), 225–228 | DOI | MR | Zbl
[7] Ballester-Bolinches A., Ezquerro L.M., Classes of Finite groups, Springer, Dordrecht, 2006 | MR | Zbl
[8] Guo W., Skiba A.N., “On $\Pi$-quasinormal subgroups of finite groups”, Monatsh. Math. | DOI | MR
[9] Skiba A.N., On the lattice of the $\sigma$-permutable subgroups of a finite group, arXiv: 1703.01773 [math.GR]
[10] Skiba A.N., “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl
[11] Guo W., Skiba A.N., “On the lattice of ${\Pi}_{\mathfrak{I}}$-subnormal subgroups of a finite group”, Bull. Aust. Math. Soc. | DOI | MR
[12] Pazderski G., “On groups for which the lattice of normal subgroups is distributive”, Beiträge Algebra Geom., 24 (1987), 185–200 | MR | Zbl
[13] Kegel O.H., “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[14] Skiba A.N., “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl
[15] Skiba A.N., “On finite groups for which the lattice of $S$-permutable subgroups is distributive”, Arch. Math., 109 (2017), 9–17 | DOI | MR | Zbl
[16] Grätzer G., General Lattice Theory, Birkhäuser Verlag, Basel–Stuttgard, 1978 | MR | Zbl
[17] Ballester-Bolinches A., Ezquerro L.M., Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006 | MR | Zbl