Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 82-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a wide class of quadratic optimization problems with Boolean variables. Such problems can be found in economics, planning, project management, artificial intelligence and computer-aided design. The problems are known to be NP-hard. In this paper, the lower and upper bounds on the stability radius of the set of extremum solutions are obtained in the situation where solution space and criterion space are endowed with various Hölder's norms.
@article{TIMB_2017_25_2_a7,
author = {V. A. Emelichev and Y. V. Nikulin},
title = {Stability measures for multicriteria quadratic {Boolean} programming problem of finding extremum solutions},
journal = {Trudy Instituta matematiki},
pages = {82--90},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/}
}
TY - JOUR AU - V. A. Emelichev AU - Y. V. Nikulin TI - Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions JO - Trudy Instituta matematiki PY - 2017 SP - 82 EP - 90 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/ LA - en ID - TIMB_2017_25_2_a7 ER -
%0 Journal Article %A V. A. Emelichev %A Y. V. Nikulin %T Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions %J Trudy Instituta matematiki %D 2017 %P 82-90 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/ %G en %F TIMB_2017_25_2_a7
V. A. Emelichev; Y. V. Nikulin. Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 82-90. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/