Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 82-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a wide class of quadratic optimization problems with Boolean variables. Such problems can be found in economics, planning, project management, artificial intelligence and computer-aided design. The problems are known to be NP-hard. In this paper, the lower and upper bounds on the stability radius of the set of extremum solutions are obtained in the situation where solution space and criterion space are endowed with various Hölder's norms.
@article{TIMB_2017_25_2_a7,
     author = {V. A. Emelichev and Y. V. Nikulin},
     title = {Stability measures for multicriteria quadratic {Boolean} programming problem of finding extremum solutions},
     journal = {Trudy Instituta matematiki},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - Y. V. Nikulin
TI  - Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 82
EP  - 90
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/
LA  - en
ID  - TIMB_2017_25_2_a7
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A Y. V. Nikulin
%T Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
%J Trudy Instituta matematiki
%D 2017
%P 82-90
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/
%G en
%F TIMB_2017_25_2_a7
V. A. Emelichev; Y. V. Nikulin. Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 82-90. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/

[1] Shor N. Z., Stetsenko S. I., Quadratic extreme problems and non-differential optimization, Naukova dumka, Kiev, 1989 (in Russian)

[2] Krarup J. Pruzan P. M., “Computer-aided Layot Design”, Mathematical Programming Study, 9 (1978), 75–94 | DOI | MR | Zbl

[3] Pardalos P. M., Rodgers G. P., “A branch and bound algorithm for the maximum clique problem”, Computers and Operation Research, 19 (1992), 363–375 | DOI | MR | Zbl

[4] Pardalos P. M., Xue J., “The maximum clique problem”, Journal of Global Optimization, 4 (1994), 301–328 | DOI | MR | Zbl

[5] Hammer P. L., “Pseudo-Boolean Remarks on Balanced Graphs”, International Series of Numerical Mathematics, 36, 1977, 69–78 | MR | Zbl

[6] Ebenegger Ch., Hammer P. L., de Werra, D., “Pseudo-Boolean functions and stability of graphs”, Algebraic and combinatorial methods in operations research, North-Holland Math. Stud., 95, 1984, 83–97 | DOI | MR

[7] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., Calif., San Francisco, 1979 | MR | Zbl

[8] Padberg M., “The boolean quadric polytope — some characteristics, facets and relatives”, Mathematical Programming, 45 (1989), 139–172 | DOI | MR | Zbl

[9] Emelichev V. A., Kuzmin K. G., Mychkov V. I., “Estimates of stability radius of multicriteria Boolean problem with Hölder metrics in parameter spaces”, Bulletin of the Academy of Sciences of Moldova. Mathematics, 78:2 (2015), 74–81 | MR | Zbl

[10] Podinovski V. V., Nogin V. D., Pareto-optimal solutions of multicriteria problems, Fizmatlit, M., 2007 (in Russian) | MR

[11] Molodtsov D. A., Stability of optimality principle, Nauka, M., 1987 (in Russian) | MR

[12] Sholomov L. A., Logical methods for the investigation of discrete choice models, Nauka, M., 1989 (in Russian) | MR | Zbl

[13] Yudin D. B., Computational methods in decision making, Nauka, M., 1989 (in Russian) | MR

[14] Aizerman M. A., Alekserov F. T., Choice of alternatives: theoretical foundations, Nauka, M., 1989 (in Russian) | MR

[15] Pareto V., Manuel d'ecoonomie politique, V. Giard E. Briere, Paris, 1909

[16] Slater M., Lagrange Multipliers Revisited: A Contribution to Nonlinear Programming, Cowles Commission Discussion Paper 80, Mathematics 403, Yale University, 1950

[17] Steuer R. E., Multiple Criteria Optimization: Theory, Computation and Application, John Wiley, New York, 1986 | MR | Zbl

[18] Emelichev V. A., Girlich E., Nikulin Y. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[19] Hardy G. H., Littlewood J. E., Polya G., Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952 | MR | Zbl

[20] Emelichev V. A., Kuzmin K. G., “Stability radius of a vector integer linear programming problem: case of a regular norm in the space of criteria”, Cybernetics and Systems Analysis, 46:1 (2010), 72–79 | DOI | MR | Zbl

[21] Korotkov V. V., Nikulin Y. V., Emelichev V. A., “Stability of the bicriteria Boolean investment problem subject to extreme optimism and pessimism criteria”, Croatian Operational Research Review, 6:1 (2015), 195–205 | DOI | MR | Zbl

[22] Emelichev V. A., Korotkov V. V., “On stability radius of the multicriteria variant of Markowitz's investment portfolio problem”, Bulletin of the Academy of Sciences of Moldova. Mathematics, 65:1 (2011), 83–94 | MR | Zbl