Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 82-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a wide class of quadratic optimization problems with Boolean variables. Such problems can be found in economics, planning, project management, artificial intelligence and computer-aided design. The problems are known to be NP-hard. In this paper, the lower and upper bounds on the stability radius of the set of extremum solutions are obtained in the situation where solution space and criterion space are endowed with various Hölder's norms.
@article{TIMB_2017_25_2_a7,
     author = {V. A. Emelichev and Y. V. Nikulin},
     title = {Stability measures for multicriteria quadratic {Boolean} programming problem of finding extremum solutions},
     journal = {Trudy Instituta matematiki},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - Y. V. Nikulin
TI  - Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 82
EP  - 90
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/
LA  - en
ID  - TIMB_2017_25_2_a7
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A Y. V. Nikulin
%T Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions
%J Trudy Instituta matematiki
%D 2017
%P 82-90
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/
%G en
%F TIMB_2017_25_2_a7
V. A. Emelichev; Y. V. Nikulin. Stability measures for multicriteria quadratic Boolean programming problem of finding extremum solutions. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 82-90. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a7/