On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 50-59
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain some upper bound for the highest exponent of a linear differential system with perturbation matrix $Q$, satisfying the condition $\|Q (t)\|\le N_Q\beta(t)$, $t\ge0$, where $N_Q>0$ is some constant depending on $Q$, and $\beta$ is an arbitrary fixed nonnegative piecewise continuous bounded function that is infinitesimal in the mean on the positive semiaxis.
@article{TIMB_2017_25_2_a4,
author = {E. K. Makarov and I. V. Marchenko},
title = {On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies},
journal = {Trudy Instituta matematiki},
pages = {50--59},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/}
}
TY - JOUR AU - E. K. Makarov AU - I. V. Marchenko TI - On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies JO - Trudy Instituta matematiki PY - 2017 SP - 50 EP - 59 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/ LA - ru ID - TIMB_2017_25_2_a4 ER -
%0 Journal Article %A E. K. Makarov %A I. V. Marchenko %T On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies %J Trudy Instituta matematiki %D 2017 %P 50-59 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/ %G ru %F TIMB_2017_25_2_a4
E. K. Makarov; I. V. Marchenko. On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 50-59. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/