On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 50-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some upper bound for the highest exponent of a linear differential system with perturbation matrix $Q$, satisfying the condition $\|Q (t)\|\le N_Q\beta(t)$, $t\ge0$, where $N_Q>0$ is some constant depending on $Q$, and $\beta$ is an arbitrary fixed nonnegative piecewise continuous bounded function that is infinitesimal in the mean on the positive semiaxis.
@article{TIMB_2017_25_2_a4,
     author = {E. K. Makarov and I. V. Marchenko},
     title = {On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies},
     journal = {Trudy Instituta matematiki},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/}
}
TY  - JOUR
AU  - E. K. Makarov
AU  - I. V. Marchenko
TI  - On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 50
EP  - 59
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/
LA  - ru
ID  - TIMB_2017_25_2_a4
ER  - 
%0 Journal Article
%A E. K. Makarov
%A I. V. Marchenko
%T On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
%J Trudy Instituta matematiki
%D 2017
%P 50-59
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/
%G ru
%F TIMB_2017_25_2_a4
E. K. Makarov; I. V. Marchenko. On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 50-59. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/