On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some upper bound for the highest exponent of a linear differential system with perturbation matrix $Q$, satisfying the condition $\|Q (t)\|\le N_Q\beta(t)$, $t\ge0$, where $N_Q>0$ is some constant depending on $Q$, and $\beta$ is an arbitrary fixed nonnegative piecewise continuous bounded function that is infinitesimal in the mean on the positive semiaxis.
@article{TIMB_2017_25_2_a4,
     author = {E. K. Makarov and I. V. Marchenko},
     title = {On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies},
     journal = {Trudy Instituta matematiki},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/}
}
TY  - JOUR
AU  - E. K. Makarov
AU  - I. V. Marchenko
TI  - On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 50
EP  - 59
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/
LA  - ru
ID  - TIMB_2017_25_2_a4
ER  - 
%0 Journal Article
%A E. K. Makarov
%A I. V. Marchenko
%T On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies
%J Trudy Instituta matematiki
%D 2017
%P 50-59
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/
%G ru
%F TIMB_2017_25_2_a4
E. K. Makarov; I. V. Marchenko. On upward mobility of the highest exponent of a linear differential system under perturbations of the coefficients from the simplest classes with degeneracies. Trudy Instituta matematiki, Tome 25 (2017) no. 2, pp. 50-59. http://geodesic.mathdoc.fr/item/TIMB_2017_25_2_a4/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[2] Izobov N. A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006

[3] Izobov N. A., “Lineinye sistemy obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhn. Mat. analiz, 12, VINITI, M., 1974, 71–146

[4] Millionschikov V. M., “Dokazatelstvo dostizhimosti tsentralnykh pokazatelei lineinykh sistem”, Sib. mat. zhurn., 10:1 (1969), 99–104 | MR

[5] Izobov N. A., “O starshem pokazatele lineinoi sistemy s eksponentsialnymi vozmuscheniyami”, Differents. uravneniya, 5:7 (1969), 1186–1192 | MR | Zbl

[6] Izobov N. A., “Eksponentsialnye pokazateli lineinoi sistemy i ikh vychislenie”, Dokl. AN BSSR, 26:1 (1982), 5–8 | MR

[7] Sergeev I. N., “Tochnye verkhnie granitsy podvizhnosti pokazatelei Lyapunova sistemy differentsialnykh uravnenii i povedenie pokazatelei pri vozmuscheniyakh, stremyaschikhsya k nulyu na beskonechnosti”, Differents. uravneniya, 16:3 (1980), 438–448 | MR | Zbl

[8] Sergeev I. N., “Tochnye granitsy podvizhnosti pokazatelei Lyapunova lineinykh sistem pri malykh v srednem vozmuscheniyakh”, Trudy seminara im. I. G. Petrovskogo, 11, 1986, 32–73

[9] Barabanov E. A., “O krainikh pokazatelyakh Lyapunova lineinykh sistem pri eksponentsialnykh i stepennykh vozmuscheniyakh”, Differents. uravneniya, 20:2 (1984), 357

[10] Barabanov E. A., Vishnevskaya O. G., “Tochnye granitsy pokazatelei Lyapunova lineinoi differentsialnoi sistemy s integralno ogranichennymi na poluosi vozmuscheniyami”, Dokl. AN Belarusi, 41:5 (1997), 29–34 | MR | Zbl

[11] Makarov E. K., Marchenko I. V., Semerikova N. V., “Ob otsenke sverkhu dlya starshego pokazatelya lineinoi differentsialnoi sistemy s integriruemymi na poluosi vozmuscheniyami”, Differents. uravneniya, 41:2 (2005), 215–224 | MR | Zbl

[12] Marchenko I. V., “Tochnaya granitsa podvizhnosti vverkh starshego pokazatelya lineinoi sistemy pri vozmuscheniyakh malykh v srednem s vesom”, Differents. uravneniya, 41:10 (2005), 1416–1418 | MR | Zbl

[13] Makarov E. K., Marchenko I. V., “Ob algoritme postroeniya dostizhimykh verkhnikh granits dlya starshego pokazatelya vozmuschennykh sistem”, Differents. uravneniya, 41:12 (2005), 1621–1634 | MR | Zbl

[14] Makarov E. K., Kozhurenko N. V., “O dostatochnykh usloviyakh primenimosti algoritma vychisleniya sigma-pokazatelya dlya integralno ogranichennykh vozmuschenii”, Differents. uravneniya, 43:2 (2007), 203–211 | MR | Zbl

[15] Makarov E. K., “O predelnykh klassakh ogranichennykh vozmuschenii”, Differents. uravneniya, 50:10 (2014), 1339–1346 | DOI | Zbl

[16] Makarov E. K., “O G-predelnykh klassakh vozmuschenii, opredelyaemykh integralnymi usloviyami”, Differents. uravneniya, 52:10 (2016), 1345–1351 | DOI | Zbl

[17] Adrianova L. Ya., Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo SPbU, S.-Pb., 1992

[18] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[19] Barabanov E. A., “Neobkhodimye usloviya sovmestnogo povedeniya starshikh sigma-pokazatelei treugolnoi sistemy i sistemy ee diagonalnogo priblizheniya”, Differents. uravneniya, 25:10 (1989), 1662–1670 | MR | Zbl