Zerosymmetric idempotent near-rings with Abelian additive groups
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 97-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is to clarify a structure of the near-rings indicated in the title (shortly, ZPIR-near-rings). It is shown that any such near-ring $N$ is weakly commutative and poset $N$ endowed by the natural order relation as a reduced near-ring, is a union of Boolean lattices and may be presented as a coextension of the generalized Boolean lattice by the family of left bands. At the end of the article one defines an ideally hereditary radical in the class of all ZPIR-near-rings, the corresponding semisimple class consisting of Boolean rings.
@article{TIMB_2017_25_1_a8,
     author = {V. M. Shyryaeu},
     title = {Zerosymmetric idempotent near-rings with {Abelian} additive groups},
     journal = {Trudy Instituta matematiki},
     pages = {97--126},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/}
}
TY  - JOUR
AU  - V. M. Shyryaeu
TI  - Zerosymmetric idempotent near-rings with Abelian additive groups
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 97
EP  - 126
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/
LA  - en
ID  - TIMB_2017_25_1_a8
ER  - 
%0 Journal Article
%A V. M. Shyryaeu
%T Zerosymmetric idempotent near-rings with Abelian additive groups
%J Trudy Instituta matematiki
%D 2017
%P 97-126
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/
%G en
%F TIMB_2017_25_1_a8
V. M. Shyryaeu. Zerosymmetric idempotent near-rings with Abelian additive groups. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 97-126. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/

[1] Abbott J. C., “Semi-Boolean algebras”, Matemat. Vesnik, 4(19):1 (1967), 177–198 | MR

[2] Abbott J. C., Sets, lattices and Boolean algebras, Allyn and Bacon, Boston, 1969 | MR

[3] Abdullahu F., “Idempotents in Semimedial Semiroups”, Intern. J. of Algebra, 5:3 (2011), 129–134 | MR

[4] Andrunakievich V. A., Ryabukhin Yu. M., Radicals of algebras and structure theory, “Nauka”, M., 1979 (in Russian) | MR

[5] Artamonov V. A., Salii V. N., Skornyakov L. A., Shevrin L. N., Shulgeifer E. G., The General Algebra, “Nauka”, M., 1991 (in Russian) | MR

[6] Birukov A. P., “Flatness in varieties of normal bands”, Algebra and Logic, 9:3 (1970), 255–273

[7] Burmeister P., Many-Sorted Partial Algebras. Lecture Notes in Universal Algebra, Preprint, Preliminary version, Fachbereich Mathematik, Arbeitsgruppe Algemeine Algebra und Diskrete Mathematik, Technische Universität Darmstadt, Darmstadt, 2002, 232 pp.

[8] Burris S., Sankappanavar H. P., A Course in Universal Algebra, Springer-Verlag, Berlin, 1981 | MR

[9] Cïrulis J., “Subtractive nearsemilattices”, Proc. Latvian Acad. Sci., 52B:2 (1998), 228–233 | MR

[10] Cïrulis J., “Knowledge representation systems and skew nearlattices”, Contribution to General Algebra 14, eds. I. Chajda et al., Verlag Johannes Heyn, Klagenfurt, 2004, 43–51 | MR

[11] Cïrulis J., “Skew nearlattices: some structure and representation theorems”, Contribution to General Algebra 19, Proc. of the Olomouc Conference 2010 (AAA79+CYA25), Verlag Johannes Heyn., Klagenfurt, 2010, 33–44 | MR

[12] Cïrulis J., Arbeitstagung Algemeine Algebra, Preprint University of Latvia (Warszawa, 2014), 88, 10 pp. | MR

[13] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups I, AMS, Providence, Rhode Island, 1964 | MR

[14] Davey B. A., Priestley H. A., Introduction to Lattice Theory and Order, Second edition, Cambridge University Press, Cambridge, 2002 | MR

[15] Dheena P., “A generalization of strongly regular near-rings”, Indian J. pure appl. Math., 20(1):1 (1989), 58–63 | MR

[16] Dheena P., Rajeswary C., “Weakly regular near-rings”, Indian J. pure appl. Math., 28(9):5 (1997), 1207–1213 | MR

[17] Evans T., “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 8–43 | DOI | MR

[18] Fennemore C. F., “All varieties of bands. I, II”, Math. Nachr., 48:2 (1971), 237–262 | DOI | MR

[19] Gardner B. J., Wiegandt R., Radical Theory of Rings, Marcel Deccer, New-York–Basel, 2004 | MR

[20] Gerhard J. A., “The lattice of equational classes of idempotent semigroups”, J. Algebra, 15:1 (1970), 195–224 | DOI | MR

[21] Grätzer G., General Lattice Theory, Akademie-Verlag, Berlin, 1978 | MR

[22] Grätzer G., Universal Algebra, Second edition, Springer, Winnipeg, 2008 | MR

[23] Hall M., The Theory of Groups, The Macmillan Company, New-York, 1956 | MR

[24] Hardy D. W., Richman F., Walker C. L., Applied Algebra. Codes, Ciphers, and Discrete Algorithms, Second edition, CRC Press, Boca Raton; Taylor Group, London–New-York, 2009 | MR

[25] Hickman R. C., “Distributivity in semilattices”, Acta Math. Acad. Sci. Hung., 32:1–2 (1978), 35–45 | DOI | MR

[26] Hickman R. C., “Join algebras”, Comm. Algebra, 8:6 (1980), 1653–1685 | DOI | MR

[27] Howie J. M., Fundamentals in Semigroup Theory, Clarendon Press, Oxford, 1995 | MR

[28] Khan M. A., “Structure of periodic rings and certain near-rings”, Intern. J. of Pure and Applied Mathematics, 25:2 (2005), 289–306 | MR

[29] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism rings of Abelian groups, Springer-Science-Business Media, B.V., Dortrecht, 2003 | MR

[30] Leach J., “Recent developments in the theory of skew lattices”, Semigr. Forum, 52 (1996), 7–24 | DOI | MR

[31] Ligh S., “On Boolean near-rings”, Bull. Austr. Math. Soc., 1:2 (1969), 375–380 | DOI | MR

[32] Ligh S., “The structure of a special class of near-rings”, J. Austr. Math. Soc., 13:1 (1972), 141–146 | DOI | MR

[33] Ligh S., “A special class of near–rings”, J. Austr. Math. Soc., 18:3 (1974), 464–467 | DOI | MR

[34] Linton F. E. J., “Autonomous equational categories”, J. Math. Mech., 15:4 (1969), 637–642 | MR

[35] Lyapin E. S., Semigroups, Fizmatgiz, M., 1960 (in Russian)

[36] Lyapin E. S., Evseev A. E., Partial Algebraic Actions, “Obrazovanie”, S.-Petersburgh, 1991 (in Russian) | MR

[37] Malone J. J., “Near-rings with trivial multiplication”, Amer. Math. Monthly, 74:5 (1967), 1111–1112 | DOI | MR

[38] Mason G., “Strongly regular near–rings”, Proc. Edinburgh Math. Soc., 23:1 (1980), 27–35 | DOI | MR

[39] Mc Lean D., “Idempotent semigroups”, Amer. Math. Monthly, 61:1 (1954), 110–113 | MR

[40] Miller J. B., “Representation of Boolean hypolattices”, Bull. Austr. Math. Soc., 24:2 (1981), 389–404 | DOI | MR

[41] Noor A. S. A., Cornish W. H., “Multipliers on a nearlattice”, Comment. Math. Univ. Carol., 27:4 (1986), 815–827 | MR

[42] Petrich M., Lectures in Semigroups, Wiley, Berlin, 1977 | MR

[43] Pierce B., “Linear Associative Algebra”, Amer. J. Math., 4:1 (1981), 97–229 | MR

[44] Pierce R. S., Introduction to the Theory of Abstract Algebra, Dover Publication, Inc., Mineola New–York, 2014 | MR

[45] Pilz G., Near-Rings. The theory and its applications, North-Holland, Amsterdam–New-York–Oxford, 1983 | MR

[46] Pinus A. G., Congruenz-modular variety of algebras, Izd. IGU, Irkutsk, 1980 (in Russian)

[47] Ramakotaian D., Sambasivarao V., “Reduced near-rings”, Near-Rings and Near-Fields, ed. G. Betsch, Elsevier Science Publischer B. V., North-Holland, 1987, 233–243 | MR

[48] Schein B. M., “The entropic bands and noncommutative semilattices”, XVIII Herzen's readings, MATEMATICA, the program and the theses of reports, Izd. LGPI, Leningrad, 1965, 11–13 (in Russian)

[49] Shyryaeu V. M., Zerosymmetric multioperator near-rings, v. II, Electronic resource, Izd. BGU, Minsk, 2009, 282 pp., Dep. In Bel ICA. 27.10.09 No 200935 (in Russian)

[50] Skornyakov L. A., Elements of the theorie of lattices, “Nauka”, M., 1970 (in Russian) | MR

[51] Subrahmanyam N. V., “Boolean Semirings”, Math. Annalen, 148:2 (1962), 395–405 | DOI | MR

[52] Trachtman A. N., “Semigroups in which all subsemigroups belongs some variety”, Matem. Zapiski UrGU, I (1974), 110–126 (in Russian)

[53] Vagner V. V., “Restrictive semigroup”, Isv. Vyssh. Uchebn. Zaved. Matematika, 31:1 (1962), 17–19 (in Russian) | MR

[54] Vagner V. V., “The theory of relations and the algebra of partial transformations”, The theory of semigroups and it's applications, The collection of scientific papers, v. I, Izd. SGU, Saratov, 1965, 3–178 (in Russian) | MR

[55] Venkateswarlu K., Murthy B. V. N., Amarnath N., “Boolean Like Semirings”, Int. J. Contemp. Math. Sciences, 6:3 (2011), 619–635 | MR

[56] Vechtomov E. M., “On Boolean rings”, Mat. Zametki, 39 (1986), 182–185 (in Russian) | MR

[57] Yamada M., Kimura N., “Note on idempotent semigroups II”, Proc. Japan Acad., 33:3 (1957), 642–645 | MR