Zerosymmetric idempotent near-rings with Abelian additive groups
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 97-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is to clarify a structure of the near-rings indicated in the title (shortly, ZPIR-near-rings). It is shown that any such near-ring $N$ is weakly commutative and poset $N$ endowed by the natural order relation as a reduced near-ring, is a union of Boolean lattices and may be presented as a coextension of the generalized Boolean lattice by the family of left bands. At the end of the article one defines an ideally hereditary radical in the class of all ZPIR-near-rings, the corresponding semisimple class consisting of Boolean rings.
@article{TIMB_2017_25_1_a8,
     author = {V. M. Shyryaeu},
     title = {Zerosymmetric idempotent near-rings with {Abelian} additive groups},
     journal = {Trudy Instituta matematiki},
     pages = {97--126},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/}
}
TY  - JOUR
AU  - V. M. Shyryaeu
TI  - Zerosymmetric idempotent near-rings with Abelian additive groups
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 97
EP  - 126
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/
LA  - en
ID  - TIMB_2017_25_1_a8
ER  - 
%0 Journal Article
%A V. M. Shyryaeu
%T Zerosymmetric idempotent near-rings with Abelian additive groups
%J Trudy Instituta matematiki
%D 2017
%P 97-126
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/
%G en
%F TIMB_2017_25_1_a8
V. M. Shyryaeu. Zerosymmetric idempotent near-rings with Abelian additive groups. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 97-126. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a8/