Inversion with respect to a horocycle of a hyperbolic plane of positive curvature
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inversion with respect to a horocycle of the hyperbolic plane $\widehat{H}$ of positive curvature in Cayley – Klein projective model is investigated. Analytical expression of inversion in the canonical frame of the second type is received. Images of the lines and oricycles, concentric with base of inversion are defined. The image of the line $l$ of the plane $\widehat{H}$ which isn't containing the inversion center is: 1) a parabola of the Lobachevskii plane if $l$ has no common real points with the horizon of inversion base; 2) an equidistant line of the Lobachevskii plane if $l$ concerns the horizon of inversion base; 3) a single-branch hyperbolic parabola of the plane $\widehat {H}$ if $l$ crosses the horizon of inversion base in two real points.
Keywords: hyperbolic plane of positive curvature, horizon of the horocycle, inversion with respect to a horocycle of the hyperbolic plane of positive curvature.
Mots-clés : horocycle
@article{TIMB_2017_25_1_a6,
     author = {L. N. Romakina},
     title = {Inversion with respect to a horocycle of a hyperbolic plane of positive curvature},
     journal = {Trudy Instituta matematiki},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a6/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Inversion with respect to a horocycle of a hyperbolic plane of positive curvature
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 82
EP  - 92
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a6/
LA  - ru
ID  - TIMB_2017_25_1_a6
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Inversion with respect to a horocycle of a hyperbolic plane of positive curvature
%J Trudy Instituta matematiki
%D 2017
%P 82-92
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a6/
%G ru
%F TIMB_2017_25_1_a6
L. N. Romakina. Inversion with respect to a horocycle of a hyperbolic plane of positive curvature. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 82-92. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a6/

[1] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny, v 4 ch., v. 1, Trigonometriya, Izd-vo Sarat. un-ta, Saratov, 2013, 244 pp.

[2] Romakina L. N., Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny, v 4 ch., v. 2, Preobrazovaniya i prostye razbieniya, Izd-vo Sarat. un-ta, Saratov, 2013, 274 pp.

[3] Rozenfeld B. A., Zamakhovskii M. P., Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, Izd-vo MTsNMO, M., 2003, 560 pp.

[4] Romakina L. N., “Simple partitions of a hyperbolic plane of positive curvature”, Sbornik: Mathematics, 203:9 (2012), 1310 | DOI | DOI | MR

[5] Romakina L. N., “Analogi formuly Lobachevskogo dlya ugla parallelnosti na giperbolicheskoi ploskosti polozhitelnoi krivizny”, Sib. elektron. matem. izv., 10 (2013), 393–407

[6] Romakina L. N., “Teorema o ploschadi pryamougolnogo trekhrebernika giperbolicheskoi ploskosti polozhitelnoi krivizny”, Dalnevostochnyi matem. zhurn., 13:1 (2013), 127–147

[7] Romakina L. N., “On the area of a trihedral on a hyperbolic plane of positive curvature”, Siberian Advances in Mathematics, 25:2 (2015), 138–153 | DOI | MR

[8] Asmus Im., “Duality between hyperbolic and de Sitter geometry”, J. Geom., 96:1–2 (2009), 11–40 | DOI | MR

[9] Cho Yun, “Trigonometry in extended hyperbolic space and extended de Sitter space”, Bull. Korean Math. Soc., 46:6 (2009), 1099–1133 | DOI | MR

[10] Baki Karliga, Umit Tokeser, Girard type theorems for de Sitter triangles with non-nul edges, 17 Dec. 2014, 10 pp., arXiv: 1412.5507v1 [math–ph]

[11] Horváth Á. G., “Hyperbolic plane geometry revisited”, J. Geom., 106:2 (2015), 341–362 | DOI | MR

[12] Klein F., Neevklidova geometriya, ONTI NKTP SSSR, M.–L., 1936, 356 pp.

[13] Romakina L. N., “Ovalnye linii giperbolicheskoi ploskosti polozhitelnoi krivizny”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:3 (2012), 37–44

[14] Romakina L. N., “Cycles on the Hyperbolic Plane of Positive Curvature”, J. Math. Sci., 212 (2016), 605 | DOI | MR

[15] Romakina L. N., “The chord length of a hypercycle in a hyperbolic plane of positive curvature”, Sib. Math. J., 54 (2013), 894 | DOI | MR

[16] Romakina L. N., “Dlina dugi oritsikla giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matematika. Mekhanika, 2014, no. 16, 58–61

[17] Horváth Á. G., “Malfatti's problem on the hyperbolic plane”, Studia Sci. Math., 51:2 (2014), 201–212 | DOI | MR

[18] Romakina L. N., “Inversion with respect to a hypercycle of a hyperbolic plane of positive curvature”, J. Geom., 107:1 (2016), 137–149 | DOI | MR

[19] Atanasyan L. S., Bazylev V. T., Geometriya, V 2 ch., v. 2, Prosveschenie, M., 1987, 352 pp.