The weighted $k$-path vertex cover problem on series-parallel graphs
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 62-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a graph $G$ with a vertex weight function $\omega_V:~V(G)\to\mathbb{R}^+$ and a positive integer $k,$ we consider the weighted $k$-path vertex cover problem: it consists in finding a minimum-weight subset $S$ of vertices of a graph $G$ such that every path of order $k$ in $G$ contains at least one vertex from $S.$ We give $O(n)$ algorithms for finding the minimum weight of $k$-path vertex cover and connected $k$-path vertex cover for series-parallel graphs.
@article{TIMB_2017_25_1_a5,
     author = {V. V. Lepin},
     title = {The weighted $k$-path vertex cover problem on series-parallel graphs},
     journal = {Trudy Instituta matematiki},
     pages = {62--81},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a5/}
}
TY  - JOUR
AU  - V. V. Lepin
TI  - The weighted $k$-path vertex cover problem on series-parallel graphs
JO  - Trudy Instituta matematiki
PY  - 2017
SP  - 62
EP  - 81
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a5/
LA  - ru
ID  - TIMB_2017_25_1_a5
ER  - 
%0 Journal Article
%A V. V. Lepin
%T The weighted $k$-path vertex cover problem on series-parallel graphs
%J Trudy Instituta matematiki
%D 2017
%P 62-81
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a5/
%G ru
%F TIMB_2017_25_1_a5
V. V. Lepin. The weighted $k$-path vertex cover problem on series-parallel graphs. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 62-81. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a5/