The weighted $k$-path vertex cover problem on series-parallel graphs
Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 62-81
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a graph $G$ with a vertex weight function $\omega_V:~V(G)\to\mathbb{R}^+$ and a positive integer $k,$ we consider the weighted $k$-path vertex cover problem: it consists in finding a minimum-weight subset $S$ of vertices of a graph $G$ such that every path of order $k$ in $G$ contains at least one vertex from $S.$ We give $O(n)$ algorithms for finding the minimum weight of $k$-path vertex cover and connected $k$-path vertex cover for series-parallel graphs.
@article{TIMB_2017_25_1_a5,
author = {V. V. Lepin},
title = {The weighted $k$-path vertex cover problem on series-parallel graphs},
journal = {Trudy Instituta matematiki},
pages = {62--81},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a5/}
}
V. V. Lepin. The weighted $k$-path vertex cover problem on series-parallel graphs. Trudy Instituta matematiki, Tome 25 (2017) no. 1, pp. 62-81. http://geodesic.mathdoc.fr/item/TIMB_2017_25_1_a5/