Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_2_a9, author = {Yu. Metelsky and R. Shatsov}, title = {Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity}, journal = {Trudy Instituta matematiki}, pages = {98--105}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/} }
TY - JOUR AU - Yu. Metelsky AU - R. Shatsov TI - Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity JO - Trudy Instituta matematiki PY - 2016 SP - 98 EP - 105 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/ LA - ru ID - TIMB_2016_24_2_a9 ER -
%0 Journal Article %A Yu. Metelsky %A R. Shatsov %T Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity %J Trudy Instituta matematiki %D 2016 %P 98-105 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/ %G ru %F TIMB_2016_24_2_a9
Yu. Metelsky; R. Shatsov. Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 98-105. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/
[1] Berge C., Graphs and Hypergraphs, North-Holland, 1973 | MR | Zbl
[2] Beineke L. W., “Derived graphs and digraphs”, Beitraege zur Graphentheorie, Teubner-Verlag, Leipzig, 1968, 17–33
[3] Lehot P. G.H., “An optimal algorithm to detect a line graph and output its root graph”, J. Assoc. Comput. Mach., 21 (1974), 569–575 | DOI | MR | Zbl
[4] Naor J., Novick M. B., “An efficient reconstruction of a graph from its line graph in parallel”, J. Algorithms, 11 (1990), 132–143 | DOI | MR | Zbl
[5] Roussopoulos N. D., “A $\max\{m, n\}$ algorithm for determining the graph $H$ from its line graph $G$”, Inform. Process. Lett., 2 (1973), 108–112 | DOI | MR | Zbl
[6] Tashkinov V. A., “Kharakterizatsiya rebernykh grafov $p$-grafov”, Materialy 5-i Vsesoyuznoi konferentsii po problemam teoreticheskoi kibernetiki, Novosibirsk, 1980, 135–137
[7] Bermond J. C., Meyer J. C., “Graphs representatif des aretes d'un multigraphe”, J. Math. Pures Appl., 52 (1973), 299–308 | MR
[8] Hlineny P., Kratochvil J., “Computational complexity of the Krausz dimension of graphs”, Lecture Notes in Computer Science, 1335, 1997, 214–228 | DOI | MR | Zbl
[9] Glebova O., Metelsky Yu., Skums P., “Krausz dimension and its generalizations in special graph classes”, Discrete Mathematics and Theoretical Computer Science, 15:1 (2013), 107–120 | MR | Zbl
[10] Fellows M., Kratochvil J., Middendorf M., Pfeiffer F., “The complexity of induced minors and related problems”, Algorithmica, 13 (1995), 266–282 | DOI | MR | Zbl