Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 98-105
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L^m_k$ denote the class of edge intersection graphs of hypergraphs with rank at most $k$ and multiplicity at most $m.$ It is proved that the problem of recognizing graphs of the class $L^m_k$ is NP-complete for fixed $k \ge 3,$ $m \ge 1.$
@article{TIMB_2016_24_2_a9,
author = {Yu. Metelsky and R. Shatsov},
title = {Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity},
journal = {Trudy Instituta matematiki},
pages = {98--105},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/}
}
TY - JOUR AU - Yu. Metelsky AU - R. Shatsov TI - Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity JO - Trudy Instituta matematiki PY - 2016 SP - 98 EP - 105 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/ LA - ru ID - TIMB_2016_24_2_a9 ER -
%0 Journal Article %A Yu. Metelsky %A R. Shatsov %T Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity %J Trudy Instituta matematiki %D 2016 %P 98-105 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/ %G ru %F TIMB_2016_24_2_a9
Yu. Metelsky; R. Shatsov. Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 98-105. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/