Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 98-105

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L^m_k$ denote the class of edge intersection graphs of hypergraphs with rank at most $k$ and multiplicity at most $m.$ It is proved that the problem of recognizing graphs of the class $L^m_k$ is NP-complete for fixed $k \ge 3,$ $m \ge 1.$
@article{TIMB_2016_24_2_a9,
     author = {Yu. Metelsky and R. Shatsov},
     title = {Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity},
     journal = {Trudy Instituta matematiki},
     pages = {98--105},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/}
}
TY  - JOUR
AU  - Yu. Metelsky
AU  - R. Shatsov
TI  - Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 98
EP  - 105
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/
LA  - ru
ID  - TIMB_2016_24_2_a9
ER  - 
%0 Journal Article
%A Yu. Metelsky
%A R. Shatsov
%T Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity
%J Trudy Instituta matematiki
%D 2016
%P 98-105
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/
%G ru
%F TIMB_2016_24_2_a9
Yu. Metelsky; R. Shatsov. Complexity of recognizing edge intersection graphsof hypergraphs with bounded above rank and multiplicity. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 98-105. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a9/