Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_2_a7, author = {V. V. Lepin}, title = {Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph}, journal = {Trudy Instituta matematiki}, pages = {72--90}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a7/} }
TY - JOUR AU - V. V. Lepin TI - Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph JO - Trudy Instituta matematiki PY - 2016 SP - 72 EP - 90 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a7/ LA - ru ID - TIMB_2016_24_2_a7 ER -
%0 Journal Article %A V. V. Lepin %T Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph %J Trudy Instituta matematiki %D 2016 %P 72-90 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a7/ %G ru %F TIMB_2016_24_2_a7
V. V. Lepin. Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 72-90. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a7/
[1] Lepin V.V., “Algoritmy dlya nakhozhdeniya nezavisimoi $\{K_1,K_2\}$-upakovki naibolshego vesa v grafe”, Trudy Instituta matematiki, 22:1 (2014), 78–97 | Zbl
[2] Lepin V.V., “Reshenie zadachi o vzveshennoi nezavisimoi $\{K_1,K_2\}$-upakovke na grafakh s ogranichennoi drevesnoi shirinoi”, Trudy Instituta matematiki, 23:1 (2015), 98–114 | Zbl
[3] Lepin V.V., “Reshenie zadachi o vzveshennoi nezavisimoi $\{K_1,K_2\}$-upakovke na grafakh so spetsialnymi blokami”, Trudy Instituta matematiki, 23:2 (2015), 62–71
[4] Gallai T., “Transitiv orienterbare graphe”, Acta Math. Acad. Sci. Hungar, 18 (1967), 25–66 | DOI | MR | Zbl
[5] James L.O., Stanton R.G., Cowan D.D., “Graph decomposition for undirected graphs”, Proc. of the third Southeastern International Conference on Combinatorics, Graph Theory, and Computing, CGTC'72, 1972, 281–290 | MR | Zbl
[6] Cournier A., Habib M., “A New Linear Algorithm for Modular Decomposition”, Proc. of Trees in Algebra and Programming, CAAP'94, LNCS, 787, 1994, 68–84 | MR | Zbl
[7] McConnell R.M., Spinrad J.P., “Modular decomposition and transitive orientation”, Discr. Math., 201 (1999), 189–241 | DOI | MR | Zbl
[8] Tedder M., Corneil D., Habib M. Paul C., “Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations”, Proc. Int. Colloq. Automata, Languages and Programming, ICALP 2008, Lecture Notes in Computer Science, 5125, Springer-Verlag, 2008, 634–645 | DOI | MR | Zbl
[9] Jamison B., Olariu S., “A tree representation for $P_4$-sparse graphs”, Discrete Applied Mathematics, 35:2 (1992), 115–129 | DOI | MR | Zbl
[10] Jamison B., Olariu S., “$P_4$-reducible graphs, a class of uniquely tree representable graphs”, Studies in Applied Mathematics, 81 (1989), 79–87 | DOI | MR | Zbl
[11] Hoang C.T., A class of perfect graphs, Master's Thesis, School of Computer Science, McGill University, Montreal, 1983 | MR
[12] Jamison B., Olariu S., “On a unique tree representation for P4-extendible graphs”, Discrete Appl. Math., 34 (1991), 151–164 | DOI | MR | Zbl
[13] Giakoumakis V., Vanherpe J.-M., “On extended $P_4$-reducible and extended $P_4$-sparse graphs”, Theor. Comp. Sci., 180 (1997), 269–286 | DOI | MR | Zbl
[14] Jamison B., Olariu S., “A new class of brittle graphs”, Studies in Appl. Math., 81 (1989), 89–92 | DOI | MR | Zbl
[15] Maffray F., Preissmann M., “Linear recognition of pseudo–split graphs”, Discrete Appl. Math, 52 (1994), 307–312 | DOI | MR | Zbl
[16] Giakoumakis V., Roussel F., Thuillier H., “On $P_4$-tidy graphs”, Discrete Math. and Theor. Comp. Sci, 1 (1997), 17–41 | MR | Zbl
[17] Giakoumakis V., “$P_4$–laden graphs: a new class of brittle graphs”, Inf. Proc. Letters, 60 (1996), 29–36 | DOI | MR | Zbl
[18] Araujo J., Linhares-Sales C., “Grundy number on P4-classes”, Electron. Notes Discrete Math., 35 (2009), 21–27 | DOI | MR | Zbl
[19] Drgas-Burchardt E., “On prime inductive classes of graphs”, European J. Combin., 32:8 (2011), 1317–1328 | DOI | MR | Zbl
[20] Zverovich I. E., Zverovich I. I., The reducing copath method for simple homogeneous sets, Rutcor Research Report, No 19-2001, 2001
[21] Brandstadt A., Le V.B., de Ridder H.N., “Efficient robust algorithms for the Maximum Weight Stable Set Problem in chair-free graph classes”, Inf. Process. Lett., 89 (2004), 165–173 | DOI | MR | Zbl
[22] Corneil D.G., Perl Y., Stewart L.K., “Cographs: recognition,applications, and algorithms”, Congr. Numer., 43 (1984), 249–258 | MR
[23] Corneil D.G., Perl Y., Stewart L.K., “A Linear Recognition Algorithm for Cographs”, SIAM Journal on Computing, 14:4 (1985), 926–934 | DOI | MR | Zbl
[24] Habib M., Paul C., “A simple linear time algorithm for cograph recognition”, Discrete Applied Mathematics, 145:2 (2005), 183–197 | DOI | MR | Zbl
[25] Cournier A., Habib M., “A New Linear Algorithm for Modular Decomposition”, Proc. of Trees in Algebra and Programming, CAAP'94, LNCS, 787, 1994, 68–84 | MR | Zbl
[26] McConnell R.M., Spinrad J.P., “Modular decomposition and transitive orientation”, Discr. Math., 201 (1999), 189–241 | DOI | MR | Zbl
[27] Tedder M., Corneil D., Habib M., Paul C., “Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations”, Proc. Int. Colloq. Automata, Languages and Programming, ICALP 2008, Lecture Notes in Computer Science, 5125, Springer-Verlag, 2008, 634–645 | DOI | MR | Zbl