Properties of capacities generated by Sobolev classes on metric measure spaces
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of $\mathrm{Cap}_{\alpha, p}$–capacities, generated by Sobolev classes on metric spaces with doubling measure, are investigated. The principal case is $p>0$ not investigated before. It's proved that capacity is an outer measure; the property of continuity, the relation between different capacities, measure and Hausdorff dimension is investigated.
@article{TIMB_2016_24_2_a2,
     author = {S. A. Bondarev},
     title = {Properties of capacities generated by {Sobolev} classes on metric measure spaces},
     journal = {Trudy Instituta matematiki},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a2/}
}
TY  - JOUR
AU  - S. A. Bondarev
TI  - Properties of capacities generated by Sobolev classes on metric measure spaces
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 20
EP  - 31
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a2/
LA  - ru
ID  - TIMB_2016_24_2_a2
ER  - 
%0 Journal Article
%A S. A. Bondarev
%T Properties of capacities generated by Sobolev classes on metric measure spaces
%J Trudy Instituta matematiki
%D 2016
%P 20-31
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a2/
%G ru
%F TIMB_2016_24_2_a2
S. A. Bondarev. Properties of capacities generated by Sobolev classes on metric measure spaces. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 20-31. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a2/

[1] Sobolev S.L., “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sbornik, 4:46 (1938), 471–497 | Zbl

[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[3] Aronszajn N., Smith K.T., “Functional spaces and functional completion”, Annales de l'istitut Fourier, 6 (1956), 125–185 | DOI | MR | Zbl

[4] Aronszajn N., Mulla F., Szeptycky P., “On spaces of potentials connected with $L^p$-classes”, Annales de l'istitut Fourier, 13:2 (1963), 211–306 | DOI | MR | Zbl

[5] Mazya V.G., “O zadache Dirikhle dlya ellipticheskikh uravnenii proizvolnogo poryadka v neogranichennykh oblastyakh”, Doklady AN SSSR, 150 (1963), 1221–1224 | Zbl

[6] Mazya V.G., “Poligarmonicheskaya emkost v teorii pervoi kraevoi zadachi”, Sib. matem. zhurnal, 6 (1965), 127–148 | Zbl

[7] Mazya V.G., Khavin V.P., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6 (1972), 67–138 | Zbl

[8] Reshetnyak Yu.G., “O ponyatii emkosti v teorii funktsii s obobschennymi proizvodnymi”, Sib. matem. zhurnal, 10 (1969), 1109–1138

[9] Hajłasz P., “Sobolev spaces on an arbitrary metric spaces”, Potential Analysis, 5:4 (1996), 403–415 | MR | Zbl

[10] Hajłasz P., Koskela P., “Sobolev met Poincaré”, Memoirs of the AMS, 145, 2000, 1–115 | MR

[11] Calderón A.P., “Estimates for singular integral operators in terms of maximal functions”, Studia Math, 44 (1972), 561–582 | DOI | MR

[12] Hu J., “A note on Hajłasz–Sobolev spaces on fractals”, Journal of math. anal. appl., 280:1 (2003), 91–101 | DOI | MR | Zbl

[13] Yang D., “New characterization of Hajłasz-Sobolev spaces on metric spaces”, Sci. in China (series A), 46:5 (2003), 675–689 | DOI | MR | Zbl

[14] Ivanishko I.A., “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | DOI | Zbl

[15] Kinnunen J., Martio O., “The Sobolev capacity on metric spaces”, Ann. Acad. Sci. Fenn. Math., 21 (1996), 367–382 | MR | Zbl

[16] Prokhorovich M.A., “Sobolevskie emkosti na metricheskikh prostranstvakh s meroi”, Vestnik BGU. Seriya 1: Fizika, Matematika, Informatika, 2007, no. 3, 106–111

[17] Gogatishvili A., Koskela P., Zhou Y., “Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces”, Forum Math., 25 (2013), 787-819 | MR | Zbl

[18] Krotov V.G., Porabkovich A.I., “Otsenki $L^p$–ostsillyatsii funktsii pri $p>0$”, Matem. zametki, 97:3 (2015), 407–420 | DOI | Zbl

[19] Bondarev S.A., Krotov V.G., “Fine properties of Functions from Hajłasz–Sobolev classes $M^p_{\alpha}$, $p > 0$ I. Lebesgue points”, J. of Contemp. Math. Anal., 51:6 (2016), 282–295 | DOI | MR | Zbl

[20] Bondarev S.A., Krotov V.G., “Fine properties of Functions from Hajłasz–Sobolev classes $M^p_{\alpha}$, $p > 0$, II. Luzin approximation.”, J. of Contemp. Math. Anal., 52:1 (2017), 3–22 | MR

[21] Coifman R.R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Of The Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[22] Coifman R.R., Weiss G., “Analyse harmonique non-commutative sur certain espaces homogenes”, Lecture Notes in Math., 1971, 1–160 | MR

[23] Adams D.R., Hedberg L.I., Function spaces and potential theory, Springer–Verlag, Berlin–Heidelberg–New York, 1996, 366 pp. | MR

[24] Prokhorovich M.A., “Razmernost Khausdorfa mnozhestva Lebega dlya klassov $W_{\alpha}^p$ na metricheskikh prostranstvakh”, Matem. zametki., 82:1 (2007), 99–107 | DOI | Zbl

[25] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971, 126 pp.

[26] Krotov V.G., “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii na metricheskikh prostranstvakh s meroi”, Izvestiya NAN Armenii, 41:2 (2006), 25–42