Upper bound for number of integral polynomials of four degree with given order of discriminants
Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new method for estimating the number of top-integral polynomials with given discriminates. We show asymptotically accurate height assessment in the case of polynomials of fourth degree. At the same time we used the methods of the metric theory of Diophantine approximations of dependent variables.
@article{TIMB_2016_24_2_a1,
     author = {V. I. Bernik and O. N. Kemesh},
     title = {Upper bound for number of integral polynomials of four degree with given order of discriminants},
     journal = {Trudy Instituta matematiki},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a1/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - O. N. Kemesh
TI  - Upper bound for number of integral polynomials of four degree with given order of discriminants
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 14
EP  - 19
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a1/
LA  - ru
ID  - TIMB_2016_24_2_a1
ER  - 
%0 Journal Article
%A V. I. Bernik
%A O. N. Kemesh
%T Upper bound for number of integral polynomials of four degree with given order of discriminants
%J Trudy Instituta matematiki
%D 2016
%P 14-19
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a1/
%G ru
%F TIMB_2016_24_2_a1
V. I. Bernik; O. N. Kemesh. Upper bound for number of integral polynomials of four degree with given order of discriminants. Trudy Instituta matematiki, Tome 24 (2016) no. 2, pp. 14-19. http://geodesic.mathdoc.fr/item/TIMB_2016_24_2_a1/