Formula of energy parametric derivative for variable linear unbounded operators with variable domains
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 75-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulated and proved the basics of differential calculus to the parameter variable of linear unbounded operators with variable domains. Its are need for the investigation of the Hadamard's correct solvability of linear boundary value problems for operator-differential equations with variable domains of unbounded operator coefficients and linear mixed problems for non-stationary (time-dependent) partial differential equations with non-stationary boundary conditions. It are introduced new concepts mutually conjugate, conjugate and closed sesquilinear forms, weak derivatives of entire order in the parameter, derived two formulas of weak first derivative to the parameter for operators defined by means of sesquilinear forms and of the operator form, and proposed the methods of it calculation. In the physical processes of the first and second derivatives are a speed and acceleration energy change. The results are illustrated by calculating the time weak derivatives of two non-stationary boundary value problems for differential operators of the second and third orders.
@article{TIMB_2016_24_1_a9,
     author = {F. E. Lomovtsev},
     title = {Formula of energy parametric derivative for variable linear unbounded operators with variable domains},
     journal = {Trudy Instituta matematiki},
     pages = {75--94},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a9/}
}
TY  - JOUR
AU  - F. E. Lomovtsev
TI  - Formula of energy parametric derivative for variable linear unbounded operators with variable domains
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 75
EP  - 94
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a9/
LA  - ru
ID  - TIMB_2016_24_1_a9
ER  - 
%0 Journal Article
%A F. E. Lomovtsev
%T Formula of energy parametric derivative for variable linear unbounded operators with variable domains
%J Trudy Instituta matematiki
%D 2016
%P 75-94
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a9/
%G ru
%F TIMB_2016_24_1_a9
F. E. Lomovtsev. Formula of energy parametric derivative for variable linear unbounded operators with variable domains. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 75-94. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a9/

[1] Lomovtsev F. E., “Differentsirovanie i integrirovanie po parametru neogranichennykh peremennykh operatorov s peremennymi oblastyami opredeleniya”, Dokl. NAN Belarusi, 43:1 (1999), 13–15

[2] Lomovtsev F. E., “Differentsirovanie po parametru lineinykh operatorov s zavisyaschei ot parametra oblastyu opredeleniya”, Doklady Akademii nauk, 445:6 (2012), 628–630 | Zbl

[3] Lomovtsev F. E., “Novaya realizatsiya metoda energeticheskikh neravenstv dlya giperbolicheskikh differentsialno-operatornykh uravnenii s peremennymi oblastyami opredeleniya”, Doklady Akademii nauk, 456:3 (2014), 275–279 | DOI | Zbl

[4] Friedrichs K. O., “Spektraltheorie halbleschänkter Operatoren und Anwendungen auf die Spektralzerlegung von Differentialoperatoren. I”, Math. Ann., 109 (1934), 465–487 | DOI

[5] Kato T., “Fractional powers of dissipative operators. I–II”, J. Math. Soc. Japan, 13:3 (1961), 246–274 ; 14:2 (1962), 242–248 | DOI | Zbl | DOI | Zbl

[6] Lions J.-L., Equations différentielles opérationnelles et problèmes aux limites, Berlin, 1961

[7] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, M., 1971

[8] Mikhlin S. G., Kurs matematicheskoi fiziki, M., 1968

[9] Lomovtsev F. E., “Obobschenie teorii Lionsa dlya evolyutsionnykh differentsialnykh uravnenii pervogo poryadka s gladkimi operatornymi koeffitsientami. I–II”, Differents. uravneniya, 42:5 (2006), 630–640 | Zbl

[10] Lax P. D., Milgram A., “Parabolic Equations, Contributions to the Theory of Partial Differential Equations”, Ann. Math. Studies, 33, 1954, 167–190 | Zbl

[11] Kislov N. V., “Proektsionnaya teorema i ee prilozheniya k neodnorodnym granichnym zadacham”, DAN SSSR, 265:1 (1982), 31–34 | Zbl

[12] Lomovtsev F. E., “Formula pervoi proizvodnoi zavisyaschikh dissipativnykh operatorov v chastnykh proizvodnykh s zavisyaschimi ot parametra granichnymi usloviyami”, Tez. dokl. Mezhdunar. nauch. konf. po differentsialnym uravneniyam “Eruginskie chteniya–2009” (Pinsk, 26–29 maya 2009 g.), Minsk, 2009, 104–105

[13] Lomovtsev F. E., Granichnye zadachi dlya differentsialno-operatornykh uravnenii s peremennymi oblastyami opredeleniya gladkikh i razryvnykh operatornykh koeffitsientov, Avtoref. dis. \ldots d-ra fiz.-mat. nauk, Minsk, 2003