On some formations closed under taking wreath products
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 30-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct some series of subgroup-closed saturated formations $\mathfrak{F}$ satisfying the following properties: 1) $\mathfrak{F}$ is a proper subformation of $\mathfrak{E}_\pi,$ where $\pi=\mathrm{char}(\mathfrak{F});$ 2) if $G\in\mathfrak{F},$ then there exists a prime $p$ (depending on the group $G$) such that the wreath product $C_p\wr G$ belongs to $\mathfrak{F},$ where $C_p$ is the cyclic group of order $p.$ Thus an affirmative answer is obtained to Problem 18.9 from The Kourovka Notebook.
@article{TIMB_2016_24_1_a3,
     author = {S. F. Kamornikov},
     title = {On some formations closed under taking wreath products},
     journal = {Trudy Instituta matematiki},
     pages = {30--33},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a3/}
}
TY  - JOUR
AU  - S. F. Kamornikov
TI  - On some formations closed under taking wreath products
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 30
EP  - 33
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a3/
LA  - ru
ID  - TIMB_2016_24_1_a3
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%T On some formations closed under taking wreath products
%J Trudy Instituta matematiki
%D 2016
%P 30-33
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a3/
%G ru
%F TIMB_2016_24_1_a3
S. F. Kamornikov. On some formations closed under taking wreath products. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 30-33. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a3/

[1] Ballester-Bolinches A., Pin J. E., Soler-Escriva X., “Formations of finite monoids and formal languages: Eilenberg's variety theorem revisited”, Forum Math., 26:6 (2014), 1737–1761 | DOI | Zbl

[2] Mazurov V. D., Khukhro E. I., Nereshennye voprosy teorii grupp, Kourovskaya tetrad, 18-e izd., Institut matematiki SO RAN, Novosibirsk, 2014

[3] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978

[4] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992

[5] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985

[6] Gaschütz W., “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | Zbl

[7] Kamornikov S. F., Selkin M. V., Podgruppovye funktory i klassy konechnykh grupp, Belaruskaya navuka, Minsk, 2003

[8] Liebeck M. W., Prager C. E., Saxl J., “The maximal factorizations of the finite simple groups and their automorphism groups”, Amer. Math. Soc., 86:432 (1990), 1–150