Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMB_2016_24_1_a11, author = {V. I. Korzyuk and N. V. Vinh and N. T. Minh}, title = {Conservation law for the {Cauchy--Navier} equation of elastodynamics wave via {Fourier} transform}, journal = {Trudy Instituta matematiki}, pages = {100--106}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/} }
TY - JOUR AU - V. I. Korzyuk AU - N. V. Vinh AU - N. T. Minh TI - Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform JO - Trudy Instituta matematiki PY - 2016 SP - 100 EP - 106 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/ LA - en ID - TIMB_2016_24_1_a11 ER -
%0 Journal Article %A V. I. Korzyuk %A N. V. Vinh %A N. T. Minh %T Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform %J Trudy Instituta matematiki %D 2016 %P 100-106 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/ %G en %F TIMB_2016_24_1_a11
V. I. Korzyuk; N. V. Vinh; N. T. Minh. Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 100-106. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/
[1] Korzyuk V. I., Cheb E. S., “The Cauchy problem for a fourth-order equation with a bi-wave operator”, Differential Equations, 43:5 (2007), 688–695 | DOI | Zbl
[2] Korzyuk V. I., Konopelko O., Cheb E., “Boundary-value problems for fourth-order equations of hyperbolic and composite types”, Journal of Mathematical Sciences, 171:1 (2010), 89–115 | DOI | Zbl
[3] Korzyuk V. I., Vinh N. V., Minh N. T., “Classical solution of the Cauchy problem for biwave equation: Application of Fourier transform”, Mathematical Modelling and Analysis, 17:5 (2012), 630–641 | DOI | Zbl
[4] Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity, Noordhoff International Publishing, Leyden, 1975 | Zbl
[5] Hetnarski R. B., Ignaczak J., Mathematical theory of elasticity, Taylor and Francis Books Inc., 2004 | Zbl
[6] Sommerfeld A., Lectures on Theoretical Physics, v. 2, Mechanics of deformable bodies, Academic Press Inc., New York, 1950 | Zbl
[7] Stein E. M., Shakarchi R., Fourier analysis, v. 1, Princeton University Press, Princeton, NJ, 2003 | Zbl
[8] Folland G. B., Introduction to partial differential equations, v. 1, Princeton University Press, Princeton, NJ, 1995 | Zbl
[9] Korzyuk V. I., Equations of Mathematical Physics, BSU, Minsk, 2013 (In Russian)
[10] Stein Elias M., Shakarchi R., Fourier analysis, Wiley, 2003