Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform
Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 100-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we use the method of Fourier analysis to derive the formula of the total energy for the Cauchy problem of the Cauchy–Navier elastodynamics wave equation describing the motion of an isotropic elastic body. The conservation law of the total energy is obtained and consequently, the global uniqueness of the solution to the problem is implied.
@article{TIMB_2016_24_1_a11,
     author = {V. I. Korzyuk and N. V. Vinh and N. T. Minh},
     title = {Conservation law for the {Cauchy--Navier} equation of elastodynamics wave via {Fourier} transform},
     journal = {Trudy Instituta matematiki},
     pages = {100--106},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - N. V. Vinh
AU  - N. T. Minh
TI  - Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform
JO  - Trudy Instituta matematiki
PY  - 2016
SP  - 100
EP  - 106
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/
LA  - en
ID  - TIMB_2016_24_1_a11
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A N. V. Vinh
%A N. T. Minh
%T Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform
%J Trudy Instituta matematiki
%D 2016
%P 100-106
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/
%G en
%F TIMB_2016_24_1_a11
V. I. Korzyuk; N. V. Vinh; N. T. Minh. Conservation law for the Cauchy--Navier equation of elastodynamics wave via Fourier transform. Trudy Instituta matematiki, Tome 24 (2016) no. 1, pp. 100-106. http://geodesic.mathdoc.fr/item/TIMB_2016_24_1_a11/

[1] Korzyuk V. I., Cheb E. S., “The Cauchy problem for a fourth-order equation with a bi-wave operator”, Differential Equations, 43:5 (2007), 688–695 | DOI | Zbl

[2] Korzyuk V. I., Konopelko O., Cheb E., “Boundary-value problems for fourth-order equations of hyperbolic and composite types”, Journal of Mathematical Sciences, 171:1 (2010), 89–115 | DOI | Zbl

[3] Korzyuk V. I., Vinh N. V., Minh N. T., “Classical solution of the Cauchy problem for biwave equation: Application of Fourier transform”, Mathematical Modelling and Analysis, 17:5 (2012), 630–641 | DOI | Zbl

[4] Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity, Noordhoff International Publishing, Leyden, 1975 | Zbl

[5] Hetnarski R. B., Ignaczak J., Mathematical theory of elasticity, Taylor and Francis Books Inc., 2004 | Zbl

[6] Sommerfeld A., Lectures on Theoretical Physics, v. 2, Mechanics of deformable bodies, Academic Press Inc., New York, 1950 | Zbl

[7] Stein E. M., Shakarchi R., Fourier analysis, v. 1, Princeton University Press, Princeton, NJ, 2003 | Zbl

[8] Folland G. B., Introduction to partial differential equations, v. 1, Princeton University Press, Princeton, NJ, 1995 | Zbl

[9] Korzyuk V. I., Equations of Mathematical Physics, BSU, Minsk, 2013 (In Russian)

[10] Stein Elias M., Shakarchi R., Fourier analysis, Wiley, 2003