Upper bounds for the number of integer polynomials with given discriminants
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 29-36
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the Gelfond theorem on the smallest value of the two integer polynomials without common roots was obtained, taking into account the evaluation of all their derivatives.
@article{TIMB_2015_23_2_a3,
author = {N. V. Budarina and D. Dickinson and V. I. Bernik},
title = {Upper bounds for the number of integer polynomials with given discriminants},
journal = {Trudy Instituta matematiki},
pages = {29--36},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/}
}
TY - JOUR AU - N. V. Budarina AU - D. Dickinson AU - V. I. Bernik TI - Upper bounds for the number of integer polynomials with given discriminants JO - Trudy Instituta matematiki PY - 2015 SP - 29 EP - 36 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/ LA - ru ID - TIMB_2015_23_2_a3 ER -
N. V. Budarina; D. Dickinson; V. I. Bernik. Upper bounds for the number of integer polynomials with given discriminants. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 29-36. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/