Upper bounds for the number of integer polynomials with given discriminants
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Gelfond theorem on the smallest value of the two integer polynomials without common roots was obtained, taking into account the evaluation of all their derivatives.
@article{TIMB_2015_23_2_a3,
     author = {N. V. Budarina and D. Dickinson and V. I. Bernik},
     title = {Upper bounds for the number of integer polynomials with given discriminants},
     journal = {Trudy Instituta matematiki},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - D. Dickinson
AU  - V. I. Bernik
TI  - Upper bounds for the number of integer polynomials with given discriminants
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 29
EP  - 36
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/
LA  - ru
ID  - TIMB_2015_23_2_a3
ER  - 
%0 Journal Article
%A N. V. Budarina
%A D. Dickinson
%A V. I. Bernik
%T Upper bounds for the number of integer polynomials with given discriminants
%J Trudy Instituta matematiki
%D 2015
%P 29-36
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/
%G ru
%F TIMB_2015_23_2_a3
N. V. Budarina; D. Dickinson; V. I. Bernik. Upper bounds for the number of integer polynomials with given discriminants. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 29-36. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a3/

[1] Van der Varden B.A., Algebra, Nauka, M., 1976 | MR

[2] Davenport H., “A note on binary cubic forms”, Mathematika, 1961, no. 8, 58–62 | DOI | MR | Zbl

[3] Volkmann B., “The real cubic case of Mahler's conjecture”, Mathematika, 1961, no. 8, 55–57 | DOI | MR | Zbl

[4] Koleda D.V., “Ob otsenke sverkhu dlya chisla tselochislennykh mnogochlenov tretei stepeni s zadannoi granitsei dlya diskriminantov”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2010, no. 3, 10–16 | MR

[5] Bernik V., Goetze F., Kukso O., “Lower bounds for the number of integral polynomials with given order of discriminants”, Acta Arith., 2008, no. 4, 375–390 | DOI | MR | Zbl

[6] Beresnevich V., Bernik V., Goetze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2010), 1165–1179 | DOI | MR | Zbl

[7] Bernik V., Budarina N., Goetze F., Exact upper bounds for the number of the polynomials with given discriminants, toappear

[8] Gelfond A.O., Transtsendentnye i algebraicheskie chisla, M., 1952

[9] Bernik V.I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl

[10] Bernik V.I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arith., 53:1 (1989), 17–28 | MR | Zbl

[11] Sprindzhuk V.G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967