Big composition factors in restrictions of~representations of the special linear group to~subsystem subgroups with two simple components
Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to constructing composition factors with certain special properties in the restrictions of modular irreducible representations of the special linear group to subsystem subgroups with two simple components. The goal is to find factors big in some sense for both components. For an irreducible representation $\varphi$ of the group $A_l(K)$ with highest weight $\sum_{i=1}^la_i\omega_i$ set $s(\varphi)=\sum_{i=1}^la_i$ and if $l>2$, put $t(\varphi)=\sum_{i=2}^{l-1}a_i$. We show that the restriction of $\varphi$ to a maximal subsystem subgroup with two simple components $H_1$ and $H_2$ has a composition factor of the form $\varphi_1\otimes\varphi_2$ where $\varphi_i$ is an irreducible representation of $H_i$, $s(\varphi_1)=s(\varphi)$, and $s(\varphi_2)=t(\varphi)$, and prove that for all such factors $\tau_1\otimes\tau_2$ the sum $s(\tau_1)+s(\tau_2)\leqslant s(\varphi)+t(\varphi)$ and $s(\tau_i)\leqslant s(\varphi)$. If the ground field characteristic is a prime $p$, the ranks of the components are $>2$, the representation $\varphi$ is $p$-restricted and its highest weight is large with respect to $p$, we almost always can construct a factor where the highest weight of $\varphi_1$ is large with respect to $p$ and $s(\varphi_i)$ are not very far from the maximal possible values. The existence of such factors yield effective tools for solving a number of questions, in particular, for finding or estimating various parameters of the images of individual elements in representations of such groups.
@article{TIMB_2015_23_2_a15,
     author = {I. D. Suprunenko},
     title = {Big composition factors in restrictions of~representations of the special linear group to~subsystem subgroups with two simple components},
     journal = {Trudy Instituta matematiki},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a15/}
}
TY  - JOUR
AU  - I. D. Suprunenko
TI  - Big composition factors in restrictions of~representations of the special linear group to~subsystem subgroups with two simple components
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 123
EP  - 136
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a15/
LA  - en
ID  - TIMB_2015_23_2_a15
ER  - 
%0 Journal Article
%A I. D. Suprunenko
%T Big composition factors in restrictions of~representations of the special linear group to~subsystem subgroups with two simple components
%J Trudy Instituta matematiki
%D 2015
%P 123-136
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a15/
%G en
%F TIMB_2015_23_2_a15
I. D. Suprunenko. Big composition factors in restrictions of~representations of the special linear group to~subsystem subgroups with two simple components. Trudy Instituta matematiki, Tome 23 (2015) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/TIMB_2015_23_2_a15/

[1] Borel A., “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, 131, eds. A. Borel et al., Springer, Berlin, 1970, 1–55 | DOI | MR

[2] Bourbaki N., Groupes et algèbres de Lie, Chaps. IV–VI, Hermann, Paris, 1968 | MR | Zbl

[3] Bourbaki N., Groupes et algèbres de Lie, Chaps. VII–VIII, Hermann, Paris, 1975 | Zbl

[4] Braden B., “Restricted representations of classical Lie algebras of type $A_2$ and $B_2$”, Bull. Amer. Math. Soc., 73 (1967), 482–486 | DOI | MR | Zbl

[5] Jantzen J. C., Darstellungen halbeinfacher algebraicher Gruppen und zugeordnetekontravariante Formen, Bonner math. Schr., 67, 1973 | MR

[6] Jantzen J. C., Representations of Algebraic Groups, Academic Press, Orlando, 1987 | MR | Zbl

[7] Seitz G. M., The maximal subgroups of classical algebraic groups, Memoirs of the AMS, 67, no. 365, 1987 | DOI | MR

[8] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[9] Steinberg R., “Representations of algebraic groups”, Nagoya Math. J., 22 (1963), 33–56 | DOI | MR | Zbl

[10] Steinberg R., Lectures on Chevalley groups, Mimeographed lecture notes, Yale Univ. Math. Dept., New Haven, Conn., 1968 | MR | Zbl

[11] Suprunenko I. D., “Minimal polynomials of elements of order $p$ in irreducible representations of Chevalley groups over fields of characteristic $p$”, Siberian Advances in Mathematics, 6 (1996), 97–150 | MR | Zbl

[12] Suprunenko I. D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the AMS, 200, no. 939, 2009 | DOI | MR

[13] Suprunenko I. D., Zalesskii A. E., “On restricting representations of simple algebraic groups to semisimple subgroups with two simple components”, Trudy Instituta matematiki, 13:2 (2005), 109–115