Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 76-83
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that if a positive function $\mathit\Psi$ is monotonically decreasing and a series $\sum_{r=1}^\infty\mathit\Psi(r)$ diverges, then the set of points
$(x,z,\omega)\in\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$ for which there are infinitely many polynomials, such that the inequalities are satisfied
$$
|P(x)|^{-v_1}\mathit\Psi^{\lambda_1}(H), \quad |P(z)|^{-v_2}\mathit\Psi^{\lambda_2}(H), \quad |P(\omega)|_p^{-v_3}\mathit\Psi^{\lambda_3}(H)
$$
(where is $v_1+2v_2+v_3=n-3,$ $\lambda_1+2\lambda_2+\lambda_3=1,$ $n$ — polynomial degree, $v_i,\lambda_i>0,$ $i=1,2,3$), has full measure.
@article{TIMB_2015_23_1_a5,
author = {A. S. Kudin and A. V. Lunevich},
title = {Analog of {Khinchin's} theorem in case of divergence in the fields of real, complex and $p$-adic numbers},
journal = {Trudy Instituta matematiki},
pages = {76--83},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/}
}
TY - JOUR AU - A. S. Kudin AU - A. V. Lunevich TI - Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers JO - Trudy Instituta matematiki PY - 2015 SP - 76 EP - 83 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/ LA - ru ID - TIMB_2015_23_1_a5 ER -
%0 Journal Article %A A. S. Kudin %A A. V. Lunevich %T Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers %J Trudy Instituta matematiki %D 2015 %P 76-83 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/ %G ru %F TIMB_2015_23_1_a5
A. S. Kudin; A. V. Lunevich. Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/