Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 76-83

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that if a positive function $\mathit\Psi$ is monotonically decreasing and a series $\sum_{r=1}^\infty\mathit\Psi(r)$ diverges, then the set of points $(x,z,\omega)\in\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$ for which there are infinitely many polynomials, such that the inequalities are satisfied $$ |P(x)|^{-v_1}\mathit\Psi^{\lambda_1}(H), \quad |P(z)|^{-v_2}\mathit\Psi^{\lambda_2}(H), \quad |P(\omega)|_p^{-v_3}\mathit\Psi^{\lambda_3}(H) $$ (where is $v_1+2v_2+v_3=n-3,$ $\lambda_1+2\lambda_2+\lambda_3=1,$ $n$ — polynomial degree, $v_i,\lambda_i>0,$ $i=1,2,3$), has full measure.
@article{TIMB_2015_23_1_a5,
     author = {A. S. Kudin and A. V. Lunevich},
     title = {Analog of {Khinchin's} theorem in case of divergence in the fields of real, complex and $p$-adic numbers},
     journal = {Trudy Instituta matematiki},
     pages = {76--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/}
}
TY  - JOUR
AU  - A. S. Kudin
AU  - A. V. Lunevich
TI  - Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 76
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/
LA  - ru
ID  - TIMB_2015_23_1_a5
ER  - 
%0 Journal Article
%A A. S. Kudin
%A A. V. Lunevich
%T Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
%J Trudy Instituta matematiki
%D 2015
%P 76-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/
%G ru
%F TIMB_2015_23_1_a5
A. S. Kudin; A. V. Lunevich. Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/