Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that if a positive function $\mathit\Psi$ is monotonically decreasing and a series $\sum_{r=1}^\infty\mathit\Psi(r)$ diverges, then the set of points $(x,z,\omega)\in\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$ for which there are infinitely many polynomials, such that the inequalities are satisfied $$ |P(x)|^{-v_1}\mathit\Psi^{\lambda_1}(H), \quad |P(z)|^{-v_2}\mathit\Psi^{\lambda_2}(H), \quad |P(\omega)|_p^{-v_3}\mathit\Psi^{\lambda_3}(H) $$ (where is $v_1+2v_2+v_3=n-3,$ $\lambda_1+2\lambda_2+\lambda_3=1,$ $n$ — polynomial degree, $v_i,\lambda_i>0,$ $i=1,2,3$), has full measure.
@article{TIMB_2015_23_1_a5,
     author = {A. S. Kudin and A. V. Lunevich},
     title = {Analog of {Khinchin's} theorem in case of divergence in the fields of real, complex and $p$-adic numbers},
     journal = {Trudy Instituta matematiki},
     pages = {76--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/}
}
TY  - JOUR
AU  - A. S. Kudin
AU  - A. V. Lunevich
TI  - Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
JO  - Trudy Instituta matematiki
PY  - 2015
SP  - 76
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/
LA  - ru
ID  - TIMB_2015_23_1_a5
ER  - 
%0 Journal Article
%A A. S. Kudin
%A A. V. Lunevich
%T Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers
%J Trudy Instituta matematiki
%D 2015
%P 76-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/
%G ru
%F TIMB_2015_23_1_a5
A. S. Kudin; A. V. Lunevich. Analog of Khinchin's theorem in case of divergence in the fields of real, complex and $p$-adic numbers. Trudy Instituta matematiki, Tome 23 (2015) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/TIMB_2015_23_1_a5/

[1] Khintchine A., “Einige Sätze über Kettenbrüche mit Anwen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92:1–2 (1924), 115–125 (in German) | DOI | MR | Zbl

[2] Bernik V., Budarina N., Dickinson D., “A divergent Khitchine's theorem in the real, complex and $p$-adic felds”, Lithunian Mathematical Journal, 48:2 (2008), 158–173 | DOI | MR | Zbl

[3] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo IL, M., 1961

[4] Mahler K., “Über das Mass der Menge aller S-Zahlen”, Math. Ann., 3:106 (1932), 131–139 | DOI | MR

[5] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Minsk, 1967

[6] Baker A., “On a theorem of Sprindzuk”, Proc. Roy. Soc. London, Ser. A, Math. Phys. Sci., 48:292 (1966), 92–104 | DOI

[7] Bernik V., “On the exact order of approximation of zero by values of integral polynomials”, Acta Arithm., 53 (1989), 17–28 | MR | Zbl

[8] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arithm., 90 (1999), 97–112 | MR | Zbl

[9] Bernik V. I., Vasilev D. V., “Teorema Khinchinovskogo tipa dlya tselochislennykh polinomov ot kompleksnoi peremennoi”, Tr. In-ta matematiki NAN Belarusi, 1999, no. 3, 10–20

[10] Kovalevskaya E. I., “Metricheskaya teorema o tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov v $\mathbb{Q}_p$”, Dokl. NAN Belarusi. Matematika, 43:5 (1999), 34–36 | MR

[11] Baker A., Schmidt W. M., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 3:21 (1970), 1–11 | DOI | MR | Zbl

[12] Sprindzhuk V. G., Metricheskaya teoriya diofantovykh priblizhenii, Minsk, 1977